A174233 Triangle T(n,k) read by rows: the numerator of 1/n^2 - 1/(k-n)^2, 0 <= k < 2n.
0, -1, 0, -3, -1, -3, 0, -5, -8, -1, -8, -5, 0, -7, -3, -15, -1, -15, -3, -7, 0, -9, -16, -21, -24, -1, -24, -21, -16, -9, 0, -11, -5, -1, -2, -35, -1, -35, -2, -1, -5, -11, 0, -13, -24, -33, -40, -45, -48, -1, -48, -45, -40, -33, -24, -13, 0, -15, -7, -39, -3, -55, -15, -63
Offset: 1
Examples
The triangle starts 0, -1; 0, -3, -1, -3; 0, -5, -8, -1, -8, -5; 0, -7, -3, -15, -1, -15, -3, -7; 0, -9, -16, -21, -24, -1, -24, -21, -16, -9; 0, -11, -5, -1, -2, -35, -1, -35, -2, -1, -5, -11; 0, -13, -24, -33, -40, -45, -48, -1, -48, -45, -40, -33, -24, -13;
Links
- G. C. Greubel, Rows n=1..100 of triangle, flattened
Programs
-
Maple
A173233 := proc(n,k) if k = n then -1 ; else 1/n^2-1/(k-n)^2 ; numer(%) ; end if; end proc: # R. J. Mathar, Jan 06 2011
-
Mathematica
T[n_, n_] := -1; T[n_, k_] := 1/n^2 - 1/(k - n)^2; Table[Numerator[T[n, k]], {n, 1, 20}, {k, 0, 2 n - 1}]//Flatten (* G. C. Greubel, Sep 19 2018 *)
Comments