cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A174233 Triangle T(n,k) read by rows: the numerator of 1/n^2 - 1/(k-n)^2, 0 <= k < 2n.

Original entry on oeis.org

0, -1, 0, -3, -1, -3, 0, -5, -8, -1, -8, -5, 0, -7, -3, -15, -1, -15, -3, -7, 0, -9, -16, -21, -24, -1, -24, -21, -16, -9, 0, -11, -5, -1, -2, -35, -1, -35, -2, -1, -5, -11, 0, -13, -24, -33, -40, -45, -48, -1, -48, -45, -40, -33, -24, -13, 0, -15, -7, -39, -3, -55, -15, -63
Offset: 1

Views

Author

Paul Curtz, Mar 13 2010

Keywords

Comments

A value of -1 is substituted at the poles where k=n.
The triangle is created by selecting the first 2, 4, 6 etc elements of the array shown in A172370, equivalent to attaching the initial elements of the rows of A172157 to the rows of A174190.
If the first column of zeros is removed from the triangle, each row is left-right symmetric with respect to the center value.

Examples

			The triangle starts
  0,  -1;
  0,  -3,  -1,  -3;
  0,  -5,  -8,  -1,  -8,  -5;
  0,  -7,  -3, -15,  -1, -15,  -3,  -7;
  0,  -9, -16, -21, -24,  -1, -24, -21, -16,  -9;
  0, -11,  -5,  -1,  -2, -35,  -1, -35,  -2,  -1,  -5, -11;
  0, -13, -24, -33, -40, -45, -48,  -1, -48, -45, -40, -33, -24, -13;
		

Crossrefs

Programs

  • Maple
    A173233 := proc(n,k) if k = n then -1 ; else 1/n^2-1/(k-n)^2 ; numer(%) ; end if; end proc: # R. J. Mathar, Jan 06 2011
  • Mathematica
    T[n_, n_] := -1; T[n_, k_] := 1/n^2 - 1/(k - n)^2; Table[Numerator[T[n, k]], {n, 1, 20}, {k, 0, 2 n - 1}]//Flatten (* G. C. Greubel, Sep 19 2018 *)

A173232 Numbers k such that k and k+2 are both members of A002822.

Original entry on oeis.org

1, 3, 5, 10, 23, 30, 38, 45, 70, 135, 170, 175, 213, 215, 268, 355, 465, 560, 588, 653, 703, 705, 710, 773, 798, 835, 940, 978, 1115, 1130, 1158, 1258, 1370, 1500, 1570, 1843, 1860, 2040, 2280, 2285, 2333, 2425, 2985, 3008, 3020, 3598, 3600, 3838, 4375, 4450, 4480
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 13 2010

Keywords

Examples

			a(1)=1 because 1 and 3 are both in A002822.
		

Crossrefs

Programs

  • PARI
    isokp(n) = isprime(6*n-1) && isprime(6*n+1);
    isok(k) = isokp(k) && isokp(k+2); \\ Michel Marcus, May 15 2020

Extensions

Definition corrected, and sequence corrected (1158 inserted) by R. J. Mathar, May 02 2010
More terms from Jinyuan Wang, May 15 2020
Showing 1-2 of 2 results.