cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173299 Numerators of fractions x^n + y^n, where x + y = 1 and x^2 + y^2 = 2.

Original entry on oeis.org

1, 2, 5, 7, 19, 13, 71, 97, 265, 181, 989, 1351, 3691, 2521, 13775, 18817, 51409, 35113, 191861, 262087, 716035, 489061, 2672279, 3650401, 9973081, 6811741, 37220045, 50843527, 138907099, 94875313, 518408351, 708158977, 1934726305, 1321442641
Offset: 1

Views

Author

J. Lowell, Feb 15 2010

Keywords

Comments

x and y are given by -A152422 and 1-A152422. - R. J. Mathar, Mar 01 2010
Letting f(n) = x^n + y^n, recurrence relation f(n) = f(n - 1) + f(n - 2)/2 implies a(n) / A173300(n) = A026150(n) / 2^(n - 1). - Nick Hobson, Jan 30 2024

Examples

			a(3) = 5 because x^3 + y^3 is 2.5 and 2.5 is 5/2.
		

Crossrefs

Cf. A173300 (denominators).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(2*x^2-2*x-1); S:=[ r^n+(1-r)^n: n in [1..34] ]; [ Numerator(RationalField()!S[j]): j in [1..#S] ]; // Klaus Brockhaus, Mar 02 2010
    
  • Maple
    A173299 := proc(n) local x,y ; x := (1+sqrt(3))/2 ; y := (1-sqrt(3))/2 ; expand(x^n+y^n) ; numer(%) ; end proc: # R. J. Mathar, Mar 01 2010
  • Mathematica
    Module[{x=(1-Sqrt[3])/2,y},y=1-x;Table[x^n+y^n,{n,40}]]//Simplify// Numerator (* Harvey P. Dale, Aug 24 2019 *)
  • PARI
    { a(n) = numerator( 2 * polcoeff( lift( Mod((1+x)/2,x^2-3)^n ), 0) ) }
    
  • Python
    from fractions import Fraction
    def a173299_gen(a, b):
        while True:
            yield a.numerator
            b, a = b + Fraction(a, 2), b
    g = a173299_gen(1, 2)
    print([next(g) for  in range(34)])  # _Nick Hobson, Feb 20 2024

Formula

a(n) = numerator of ((1 + sqrt(3))/2)^n + ((1 - sqrt(3))/2)^n.

Extensions

Formula, more terms, and PARI script from Max Alekseyev, Feb 24 2010
More terms from Klaus Brockhaus and R. J. Mathar, Mar 01 2010