A173432 NW-SE diagonal sums of Riordan array A112468.
1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,-1,1).
Programs
-
Magma
[2*Ceiling(n/6)-2*Floor(n/6)+Floor(n/3)-Ceiling(n/3) : n in [1..100]]; // Wesley Ivan Hurt, Sep 27 2014
-
Maple
A173432:=n->2*ceil(n/6)-2*floor(n/6)+floor(n/3)-ceil(n/3): seq(A173432(n), n=1..100); # Wesley Ivan Hurt, Sep 27 2014
-
Mathematica
Table[2 Ceiling[n/6] - 2 Floor[n/6] + Floor[n/3] - Ceiling[n/3], {n, 50}] (* Wesley Ivan Hurt, Sep 27 2014 *)
-
PARI
Vec(-x*(x^2+1) / ((x-1)*(x+1)*(x^2-x+1)) + O(x^100)) \\ Colin Barker, Sep 26 2014
Formula
a(n) = 1 + A131531(n) with inverse binomial transform: 1, 0, 1, -3, 6, -11, 21, .., a signed variant of A024495. - R. J. Mathar, Mar 04 2010
a(2n+1) = a(2n)-a(2n-1)+2, a(2n) = a(2n-1)-a(2n-2) with a(1) = a(2)=1. - Philippe Deléham, Oct 11 2011
a(n) = a(n-1)-a(n-3)+a(n-4). - Colin Barker, Sep 26 2014
G.f.: -x*(x^2+1) / ((x-1)*(x+1)*(x^2-x+1)). - Colin Barker, Sep 26 2014
a(n) = 2*ceiling(n/6)-2*floor(n/6)+floor(n/3)-ceiling(n/3). - Wesley Ivan Hurt, Sep 27 2014
Extensions
Corrected and extended by Philippe Deléham, Oct 11 2011
Comments