cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173519 Number of partitions of n*(n+1)/2 into parts not greater than n.

Original entry on oeis.org

1, 1, 2, 7, 23, 84, 331, 1367, 5812, 25331, 112804, 511045, 2348042, 10919414, 51313463, 243332340, 1163105227, 5598774334, 27119990519, 132107355553, 646793104859, 3181256110699, 15712610146876, 77903855239751, 387609232487489, 1934788962992123
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 20 2010

Keywords

Comments

a(n) is also the number of partitions of n^3 into n distinct parts <= n*(n+1). a(3) = 7: [4,11,12], [5,10,12], [6,9,12], [6,10,11], [7,8,12], [7,9,11], [8,9,10]. - Alois P. Heinz, Jan 25 2012

Crossrefs

Programs

  • Mathematica
    Table[Length[IntegerPartitions[n(n + 1)/2, n]], {n, 10}] (* Alonso del Arte, Aug 12 2011 *)
    Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n+1)/2}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
  • PARI
    a(n)=
    {
        local(tr=n*(n+1)/2, x='x+O('x^(tr+3)), gf);
        gf = 1 / prod(k=1,n, 1-x^k); /* g.f. for partitions into parts <=n */
        return( polcoeff( truncate(gf), tr ) );
    } /* Joerg Arndt, Aug 14 2011 */

Formula

a(n) = A026820(A000217(n),n).
a(n) ~ c * d^n / n^2, where d = 5.4008719041181541524660911191042700520294... = A258234, c = 0.6326058791290010900659134913629203727... . - Vaclav Kotesovec, Sep 07 2014

Extensions

More terms from D. S. McNeil, Aug 12 2011