cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173691 Partial sums of round(n^2/6).

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 16, 24, 35, 49, 66, 86, 110, 138, 171, 209, 252, 300, 354, 414, 481, 555, 636, 724, 820, 924, 1037, 1159, 1290, 1430, 1580, 1740, 1911, 2093, 2286, 2490, 2706, 2934, 3175, 3429, 3696, 3976, 4270, 4578, 4901, 5239, 5592, 5960, 6344, 6744, 7161
Offset: 0

Views

Author

Mircea Merca, Nov 25 2010

Keywords

Comments

Partial sums of A056829.

Examples

			a(5) = round(1/6) + round(4/6) + round(9/6) + round(16/6) + round(25/6) = 0 + 1 + 2 + 3 + 4.
Note that 9/6 = 1.5 is rounded up.
		

Crossrefs

Cf. A056829.

Programs

  • Magma
    [Floor((2*n^3+3*n^2+6*n+16)/36): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
    
  • Maple
    a(n):=round((2*n^(3)+3*n^(2)+6*n)/(36))
  • Mathematica
    Accumulate[Round[Range[0, 50]^2/6]] (* or *) LinearRecurrence[{3,-3,1,0, 0,1,-3,3,-1}, {0,0,1,3,6,10,16,24,35}, 60] (* Harvey P. Dale, Jan 08 2014 *)
    CoefficientList[Series[x^2(1+x^4)/((1+x)(1-x+x^2)(1+x+x^2)(1-x)^4), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 26 2014 *)
  • PARI
    vector(60, n, n--; (16+6*n+3*n^2+2*n^3)\36) \\ G. C. Greubel, Jul 02 2019
    
  • Sage
    [floor((16+6*n+3*n^2+2*n^3)/36) for n in (0..60)] # G. C. Greubel, Jul 02 2019

Formula

a(n) = Sum_{k=0..n} round(k^2/6).
a(n) = round((2*n^3 + 3*n^2 + 6*n)/36).
a(n) = round((4*n^3 + 6*n^2 + 12*n + 5)/72).
a(n) = floor((2*n^3 + 3*n^2 + 6*n + 16)/36).
a(n) = ceiling((2*n^3 + 3*n^2 + 6*n - 11)/36).
a(n) = a(n-6) + n^2 - 5*n + 10, n > 5.
G.f.: x^2*(1+x^4)/((1+x)*(1-x+x^2)*(1+x+x^2)*(1-x)^4). - Bruno Berselli, Jan 12 2011