A174114 Even central polygonal numbers (A193868) divided by 2.
1, 2, 8, 11, 23, 28, 46, 53, 77, 86, 116, 127, 163, 176, 218, 233, 281, 298, 352, 371, 431, 452, 518, 541, 613, 638, 716, 743, 827, 856, 946, 977, 1073, 1106, 1208, 1243, 1351, 1388, 1502, 1541, 1661, 1702, 1828, 1871, 2003, 2048, 2186, 2233, 2377, 2426, 2576
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Mathematica
Select[Table[(n (n + 1)/2 + 1)/2, {n, 600}], IntegerQ] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2012 *) (Select[PolygonalNumber@ Range@ 100, OddQ] + 1 )/2 (* Version 10.4, or *) Rest@ CoefficientList[Series[-x (1 + x + 4 x^2 + x^3 + x^4)/((1 + x)^2 (x - 1)^3), {x, 0, 50}], x] (* Michael De Vlieger, Jun 30 2016 *)
-
PARI
a(n)=(2*n-1)*(2*n-1-(-1)^n)\4+1 \\ Charles R Greathouse IV, Jun 11 2015
Formula
a(n+3) - a(n+2) - a(n+1) + a(n) = A010696(n+1).
a(n) = A193868(n)/2. - Omar E. Pol, Aug 16 2011
G.f.: -x*(1+x+4*x^2+x^3+x^4) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Aug 18 2011
E.g.f.: ((2 + x + 2*x^2)*cosh(x) + (1 - x + 2*x^2)*sinh(x) - 2)/2. - Stefano Spezia, Nov 16 2024
Sum_{n>=1} 1/a(n) = 4*Pi*sinh(sqrt(7)*Pi/4)/(sqrt(7)*(sqrt(2) + 2*cosh(sqrt(7)*Pi/4))). - Amiram Eldar, May 12 2025
Extensions
New name from Omar E. Pol, Aug 16 2011
Comments