cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A002200 Primes of the form 2^q*3^r*5^s + 1.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 61, 73, 97, 101, 109, 151, 163, 181, 193, 241, 251, 257, 271, 401, 433, 487, 541, 577, 601, 641, 751, 769, 811, 1153, 1201, 1297, 1459, 1601, 1621, 1801, 2161, 2251, 2593, 2917, 3001, 3457, 3889, 4001, 4051, 4801, 4861
Offset: 1

Views

Author

Keywords

References

  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 53.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    K:=10^7;; # to get all terms <= K.
    A:=Filtered([1..K],IsPrime);;
    B:=List(A,i->Factors(i-1));;
    C:=[];;  for i in B do if Elements(i)=[2] or Elements(i)=[2,3]  or Elements(i)=[2,5] or Elements(i)=[2,3,5]  then Add(C,Position(B,i)); fi; od;
    A002200:=Concatenation([2],List(C,i->A[i])); # Muniru A Asiru, Sep 10 2017
  • Magma
    [p: p in PrimesUpTo(5000) | forall{d: d in PrimeDivisors(p-1) | d le 5}]; // Bruno Berselli, Sep 24 2012
    
  • Mathematica
    up=10^6; a=1; Sort[Reap[While[ aGiovanni Resta, Jul 18 2017 *)
  • PARI
    { default(primelimit, 16600000); n=0; forprime (p=2, 16600000, m=p-1; p2=p3=p5=0; s=m; r=0; while(r==0, q=s\2; r=s-2*q; s=q; if(r==0, p2++)); s=m; r=0; while(r==0, q=s\3; r=s-3*q; s=q; if(r==0, p3++)); s=m; r=0; while(r==0, q=s\5; r=s-5*q; s=q; if(r==0, p5++)); if (m == 2^p2*3^p3*5^p5, n++; write("b002200.txt", n, " ", p)); if (n >= 200, break); ); } \\ Harry J. Smith, May 25 2009
    
  • PARI
    { n=5000; cache=10^5; v=vector(cache); x2=2; x3=3; x5=5; i=j=k=1; v[1]=1; for(m=2,cache,v[m]=t=min(x2,min(x3,x5)); if(x2==t,x2=2*v[i++]); if(x3==t,x3=3*v[j++]); if(x5==t,x5=5*v[k++]);); i=0; c=0; while(cJean-Marie Madiot, Jul 17 2017
    

Extensions

Better description and more terms from Vladeta Jovovic, May 08 2003
Showing 1-1 of 1 results.