cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A174144 Primes of the form 2^p*3^q*5^r*7^s + 1.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 61, 71, 73, 97, 101, 109, 113, 127, 151, 163, 181, 193, 197, 211, 241, 251, 257, 271, 281, 337, 379, 401, 421, 433, 449, 487, 491, 541, 577, 601, 631, 641, 673, 701, 751, 757, 769, 811, 883, 1009, 1051, 1153, 1201
Offset: 1

Views

Author

Michel Lagneau, Mar 09 2010

Keywords

Comments

Restricting to r=s=0 gives the Pierpont primes (A005109); s = 0 gives A002200.

Examples

			6301 = 2^2 * 3^2 * 5^2 * 7 + 1.
		

Crossrefs

Programs

  • GAP
    K:=10^7;; # to get all terms <= K.
    A:=Filtered([1..K],IsPrime);;    I:=[3,5,7];;
    B:=List(A,i->Elements(Factors(i-1)));;
    C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i)));
    A174144:=Concatenation([2],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])], j->Positions(B,C[i][j]))))),i->A[i])); # Muniru A Asiru, Sep 12 2017
  • Magma
    [p: p in PrimesUpTo(2000) | forall{d: d in PrimeDivisors(p-1) | d le 7}]; // Bruno Berselli, Sep 24 2012
    
  • Maple
    with(numtheory):T:=array(0..50000000):U=array(0..50000000 ):k:=1:for a from 0 to 25 do:for b from 0 to 16 do:for c from 0 to 16 do:for d from 0 to 16 do: p:= 2^a*3^b*5^c*7^d + 1:if type(p, prime)=true then T[k]:=p:k:=k+1: else fi: od :od:od:od:mini:=T[1]:ii:=1:for p from 1 to k-1 do:for n from 1 to k-1 do: if T[n] < mini then mini:= T[n]:ii:=n: indice:=U[n]: else f i:od:print(mini):T[ii]:= 10^30: ii:=1:mini:=T[1] :od:
  • Mathematica
    Take[ Select[ Sort[ Flatten[ Table[2^a*3^b*5^c*7^d + 1, {a, 0, 25}, {b, 0, 16},{c, 0, 16},{d, 0, 16}]]], PrimeQ[ # ] &], 100] (* or *) PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[3, 6300],
    ClassMinusNbr[ Prime[ # ]] == 1 &]] Select[Prime /@ Range[10^5], Max @@ First /@ FactorInteger[ # - 1] < 5 &]
  • PARI
    list(lim)={
        lim\=1;
        my(v=List([2]),s,t,p);
        for(i=0,log(lim\2+.5)\log(7),
            t=2*7^i;
            for(j=0,log(lim\t+.5)\log(5),
                s=t*5^j;
                while(s < lim,
                    p=s;
                    while(p < lim,
                        if(isprime(p+1),listput(v,p+1));
                        p <<= 1
                    );
                    s *= 3;
                )
            )
        );
        vecsort(Vec(v))
    }; \\ Charles R Greathouse IV, Sep 21 2011
    
  • Sage
    A174144 = list(p for p in primes(2000) if set(prime_factors(p-1)) <= set([2,3,5,7]))
    

Extensions

Corrected and edited by D. S. McNeil, Nov 20 2010

A175257 a(n) is the smallest prime p such that 2^(p-1) == 1 (mod a(1)*...*a(n-1)*p).

Original entry on oeis.org

3, 5, 13, 37, 73, 109, 181, 541, 1621, 4861, 9721, 19441, 58321, 87481, 379081, 408241, 2041201, 2449441, 7348321, 14696641, 22044961, 95528161, 382112641, 2292675841, 8024365441, 40121827201, 481461926401, 722192889601, 2888771558401, 7944121785601, 55608852499201, 111217704998401, 889741639987201, 1779483279974401
Offset: 1

Views

Author

Manuel Valdivia, Mar 15 2010

Keywords

Comments

Conjecture: a(n) is the smallest integer k > 1 such that 2^(k-1) == 1 (mod a(0)*...*a(n-1)*k), with a(0) = 1. - Thomas Ordowski, Mar 13 2019
Either a(n) > a(n-1), or a(n) = a(n-1) is a Wieferich prime (A001220). - Max Alekseyev, Sep 29 2024

Crossrefs

Programs

  • Mathematica
    i=1;Do[p=Prime[n];If[Mod[2^(p-1)-1,p*i]==0,Print[p];i=p*i],{n,2,78498}]
  • PARI
    findprime(prd) = {forprime(p=2, , if (Mod(2, p*prd)^(p-1) == 1, return (p)););}
    lista(nn) = {my(prd = 1, na); for (n=1, nn, na = findprime(prd); print1(na, ", "); prd *= na;);} \\ Michel Marcus, Mar 14 2019
    
  • PARI
    { a175257_first_terms(N=1000) = my(P,L,t); P=[3]; L=2; for(n=#P,N, print(n," ",P[n]); forstep(p=P[n],oo,Mod(1,L), if(p==P[n], if(Mod(2,p^2)^(p-1)==1, error("Wieferich prime!"), next)); if(ispseudoprime(p), P=concat(P,[p]); t=Mod(2,p)^L; fordiv((p-1)\L,d, if(t^d==1, L*=d; break)); break))); P; } \\ Max Alekseyev, Sep 29 2024

Extensions

a(17)-a(26) from Amiram Eldar, Feb 03 2019
Name corrected by Thomas Ordowski, Mar 13 2019
a(27) from Hans Havermann, Mar 29 2019
Eliminated a(0)=1 in the definition (empty products equal 1). - R. J. Mathar, Jun 19 2021
Terms a(28) onward from Max Alekseyev, Sep 29 2024

A293008 Primes of the form 2^q * 3^r * 7^s + 1.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 29, 37, 43, 73, 97, 109, 113, 127, 163, 193, 197, 257, 337, 379, 433, 449, 487, 577, 673, 757, 769, 883, 1009, 1153, 1297, 1373, 1459, 2017, 2269, 2593, 2647, 2689, 2917, 3137, 3457, 3529, 3889, 7057, 8233, 10369, 10753, 12097, 12289, 14407, 15877, 17497, 18433
Offset: 1

Views

Author

Muniru A Asiru, Sep 28 2017

Keywords

Comments

Fermat prime exponents q occur in the case when q = 0, 1, 2, 4, 8, 16.

Examples

			With n = 1,  a(1) = 2^0 * 3^0 * 7^0 + 1 = 2.
With n = 5,  a(5) = 2^2 * 3^1 * 7^0 + 1 = 13.
list of (q, r, s): (0, 0, 0), (1, 0, 0), (2, 0, 0), (1, 1, 0), (2, 1, 0), (4, 0, 0), (1, 2, 0), (2, 0, 1), (2, 2, 0), (1, 1, 1), ...
		

Crossrefs

Cf. A002200 (Primes of the form 2^q * 3^r * 5^s + 1).

Programs

  • GAP
    K:=10^7+1;; # to get all terms <= K.
    A:=Filtered([1..K],IsPrime);;    I:=[3,7];;
    B:=List(A,i->Elements(Factors(i-1)));;
    C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i)));;
    A293008:=Concatenation([2],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i]));
  • Mathematica
    With[{n = 19000}, Union@ Select[Flatten@ Table[2^p1*3^p2*7^p4 + 1, {p1, 0, Log[2, n/(1)]}, {p2, 0, Log[3, n/(2^p1)]}, {p4, 0, Log[7, n/(2^p1*3^p2)]}], PrimeQ]] (* Michael De Vlieger, Sep 30 2017 *)

A293048 Primes of the form 2^q * 3^r * 11^s + 1.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 23, 37, 67, 73, 89, 97, 109, 163, 193, 199, 257, 353, 397, 433, 487, 577, 727, 769, 1153, 1297, 1409, 1453, 1459, 1783, 2113, 2179, 2377, 2593, 2663, 2917, 3169, 3457, 3889, 4357, 5347, 6337, 7129, 8713, 10369, 11617, 12289, 15973, 17497, 18433, 19009, 19603
Offset: 1

Views

Author

Muniru A Asiru, Sep 29 2017

Keywords

Comments

Fermat prime exponents q occur in the case when q = 0, 1, 2, 4, 8, 16.

Examples

			2 = a(1) = 2^0 * 3^0 * 11^0 + 1.
13 = a(5) = 2^2 * 3^1 * 11^0 + 1 = 13.
list of (q, r, s): (0, 0, 0), (1, 0, 0), (2, 0, 0), (1, 1, 0), (2, 1, 0), (4, 0, 0), (1, 2, 0), (2, 0, 1), (2, 2, 0), (1, 1, 1), ...
		

Crossrefs

Cf. Sequences of primes of the form 2^q * 3^r * b^s + 1: A002200 (b = 5), A293008 (b = 7).

Programs

  • GAP
    K:=10^5+1;; # to get all terms <= K.
    A:=Filtered([1..K],IsPrime);;    I:=[3,11];;
    B:=List(A,i->Elements(Factors(i-1)));;
    C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i)));;
    A293048:=Concatenation([2],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i]));
  • Mathematica
    With[{n = 20000}, Union@ Select[Flatten@ Table[2^p1*3^p2*11^p5 + 1, {p1, 0, Log[2, n/(1)]}, {p2, 0, Log[3, n/(2^p1)]}, {p5, 0, Log[11, n/(2^p1*3^p2)]}], PrimeQ]] (* Michael De Vlieger, Sep 30 2017 *)
Showing 1-4 of 4 results.