cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A174260 Prime numbers p such that the concatenation p//1331 is a prime number.

Original entry on oeis.org

23, 29, 53, 101, 113, 239, 281, 311, 347, 353, 389, 401, 431, 617, 641, 647, 743, 797, 821, 827, 863, 911, 941, 1049, 1283, 1319, 1373, 1439, 1481, 1487, 1493, 1511, 1583, 1613, 1667, 1709, 1721, 1733, 1823, 1949
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 14 2010

Keywords

Comments

Necessarily (as sod(1331) = 3 * 2 + 2): p = 6 * k - 1
See comments and references for A174213

Examples

			231331 = prime(20545) => p(1) = 23 = prime(9)
291331 = prime(25334) => p(2) = 29 = prime(10)
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[300]],PrimeQ[1331+10000#]&] (* Harvey P. Dale, Jun 22 2013 *)

A174355 Natural numbers n such that the concatenations n//1331 and 1331//n are prime numbers.

Original entry on oeis.org

53, 57, 153, 249, 279, 329, 333, 339, 347, 381, 399, 431, 471, 489, 641, 647, 711, 821, 851, 923, 959, 987, 1169, 1239, 1313, 1383, 1479, 1547, 1563, 1589, 1611, 1653, 1677, 1709, 1773, 1863, 1887, 1973, 2031, 2067
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 17 2010

Keywords

Comments

See comments and references for A173836, A174213.
Intersection of A173579 and A174213. - Michel Marcus, Aug 27 2013

Examples

			531331 = prime(43928), 133153 = prime(12427), 53 is smallest term of sequence.
		

References

  • Marcus du Sautoy: Die Musik der Primzahlen. Auf den Spuren des groessten Raetsels der Mathematik, Beck, Muenchen 2004

Crossrefs

Programs

  • Mathematica
    Select[Range[2100],AllTrue[{#*10^4+1331,1331*10^IntegerLength[#]+#},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 21 2015 *)
  • PARI
    isok(n) = isprime(n*10^4 + 1331) && isprime(1331*10^(length(Str(n))) + n); \\ Michel Marcus, Aug 27 2013

A174441 Primes p such that the concatenations p//1331 and 1331//p are both prime numbers (for naturals see A174355).

Original entry on oeis.org

53, 347, 431, 641, 647, 821, 1709, 1973, 2081, 2591, 2657, 2963, 4073, 4139, 4643, 4787, 5039, 5483, 5657, 6029, 6791, 6917, 6959, 7127, 7673, 8273, 8693, 8807, 8849, 9221, 9311, 9689, 10139, 10457, 11423, 12503, 12743, 13619, 13913, 14549
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 20 2010

Keywords

Comments

See comments and references for A173836, A174213.

Examples

			531331 = prime(43928), 133153 = prime(12427) => p(1) = 53 = prime(16).
3471331 = prime(248286), 1331347 = prime(102237) => p(2) = 347 = prime(69).
139131331 = prime(7865788), 133113913 = prime(7544750) => p(39) = 13913 = prime(1645).
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2000]],AllTrue[{#*10^4+1331,1331*10^IntegerLength[ #]+#}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 08 2016 *)
  • PARI
    isok(n) = isprime(n) && isprime(n*10^4 + 1331) && isprime(1331*10^(length(Str(n))) + n); \\ Michel Marcus, Aug 27 2013

A176600 Numbers n such that concatenations n//13 and n//31 are consecutive primes.

Original entry on oeis.org

19, 190, 250, 346, 378, 400, 402, 456, 516, 553, 567, 586, 664, 759, 762, 853, 931, 972, 1140, 1156, 1161, 1242, 1266, 1284, 1314, 1317, 1338, 1398, 1440, 1645, 1744, 1785, 1840, 1875, 1930, 1944, 2227, 2248, 2271, 2287, 2316, 2397, 2401, 2467, 2568, 2602
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 21 2010

Keywords

Comments

p = n//13 = n * 10^2 + 13 = prime(i) , q = n//31 = n * 10^2 + 31 = prime(i+1)
p and q are formed by the same digits (counted with multiplicity)
n = m//k (k = 0, 1, ...,9)
List of m < 10^3
0//13: 19, 25, 40, 114, 144, 184, 193, 280, 411, 415, 567, 604, 634, 777, 852, 862, 870, 943 (18)
1//13: 93, 116, 227, 240, 392, 462, 543, 570, 611, 675, 689, 734, 759, 821, 822, 878, 969, 986 (18)
2//13: 40, 76, 97, 124, 260, 338, 365, 415, 505, 545, 599, 625, 788, 809 (14)
3//13: 55, 85, 312, 349, 421, 424, 451, 454, 619, 622, 724, 928 (12)
4//13: 66, 128, 131, 174, 194, 293, 345, 414, 657, 687, 702, 741, 752, 867, 870, 939 (16)
5//13: 164, 178, 187, 277, 379, 416, 481, 536, 754, 824, 935, 974, 995 (13)
6//13: 34, 45, 51, 58, 115, 126, 231, 336, 402, 432, 439, 489, 502, 541, 705, 780, 838, 850, 909, 985 (20)
7//13: 56, 131, 222, 228, 239, 246, 309, 480, 530, 716, 732, 747, 761, 792, 831, 936, 981 (17)
8//13: 37, 133, 139, 224, 256, 286, 301, 304, 497, 518, 550, 559, 562, 728, 856, 907 (16)
9//13: 1, 75, 526, 558, 681, 720, 765, 916, 943 (9)
The sequence could be defined as "Numbers n such that 100n+13 and 100n+31 are consecutive primes". In that sense it could be considered to be independent of the decimal numeral system. - M. F. Hasler, Dec 04 2010

Examples

			19//13 = 1913 = prime(293), 19//31 = 1931 = prime(294), 19 is 1st term
190//13 = 19013 = prime(2161), 190//31 = 19031 = prime(2162), 190 is 2nd term
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000],PrimeQ[# 100+13]&&NextPrime[# 100+13]==# 100+31&] (* Harvey P. Dale, Jun 23 2022 *)
  • PARI
    A176600(n,print_all=0)={ for(k=1,1e9,isprime(100*k+13) || next;nextprime(100*k+17)==100*k+31||next;print_all & print1(k",");n-- || return(k))} \\ M. F. Hasler, Dec 04 2010

A176601 Primes p that p//13 and p//31 are consecutive primes.

Original entry on oeis.org

19, 853, 2287, 2467, 4243, 4513, 4621, 5431, 5701, 7243, 7477, 7591, 7927, 8221, 8317, 9283, 9439, 9817, 10039, 12781, 13933, 14461, 14923, 15727, 16693, 17443, 18199, 18217, 19207, 20749, 21139, 22147, 23761, 25471, 26701, 26953, 27481, 28111, 28447, 28579
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 21 2010

Keywords

Comments

See A176600.

Examples

			19//13 = 1913 = prime(293), 19//31 = 1931 = prime(294), 19 = prime(8) is 1st term.
853//13 = 85313 = prime(8306), 853//31 = 85331 = prime(8307), 853 = prime(147) is 2nd term.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{idn=IntegerDigits[n],p13,p31},p13=FromDigits[ Join[ idn,{1,3}]];p31=FromDigits[Join[idn,{3,1}]];PrimeQ[p13]&&NextPrime[p13] == p31]; Select[Prime[Range[16000]],okQ] (* Harvey P. Dale, Jan 21 2012 *)

Extensions

More terms from Harvey P. Dale, Jan 21 2012

A174229 Natural numbers n such that the concatenation n^3//1331, i.e., a cube and 11^3, is a prime number.

Original entry on oeis.org

2, 6, 8, 14, 21, 38, 39, 51, 54, 65, 68, 78, 80, 93, 104, 107, 114, 117, 119, 125, 135, 137, 146, 147, 152, 153, 158, 159, 167, 186, 206, 225, 243, 246, 248, 257, 258, 269, 270, 272, 278, 284, 290, 291, 306, 311, 317, 321, 323, 324, 369, 372, 387, 390, 399, 404, 410, 414, 425
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 13 2010

Keywords

Comments

See comments and references for A174213.

Examples

			2^3 = 8, 81331 = prime(7958) => a(1) = 2;
6^3 = 216, 2161331 = prime(160048) => a(2) = 6.
		

Crossrefs

Programs

  • PARI
    isok(n) = isprime(eval(concat(Str(n^3), Str(1331)))); \\ Michel Marcus, Jul 20 2017

Extensions

More terms from Michel Marcus, Jul 20 2017

A174409 Prime numbers p such that the concatenation p^3//1331 is a prime number.

Original entry on oeis.org

2, 107, 137, 167, 257, 269, 311, 317, 557, 593, 761, 773, 809, 911, 1103, 1151, 1283, 1289, 1481, 1487, 1559, 1709, 1787, 1931, 2111, 2141, 2243, 2339, 2357, 2657, 2687, 2777, 2909, 3137, 3209, 3251, 3359, 3371, 3389, 3449
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 19 2010

Keywords

Comments

See comments at A174213.
p^3//1331 is the concatenation of the cubes of two primes.
With the exception of a(1)=2, each term is necessarily of the form 6*k-1.

Examples

			The first prime is 2; 2^3 = 8, and 81331 = prime(7958), so a(1)=2.
The smallest prime p > 2 such that p^3//1331 yields a prime is p=107: 107^3 = 1225043, and 12250431331 = prime(552342812), so a(2)=107.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(5000) | IsPrime(Seqint(Intseq(1331) cat Intseq(p^3)))]; // Vincenzo Librandi, Mar 05 2018
  • Mathematica
    Select[Prime[Range[500]],PrimeQ[10000#^3+1331]&] (* Harvey P. Dale, May 30 2017 *)
Showing 1-7 of 7 results.