cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A381742 Numbers k such that k^2 is abundant but d*k is nonabundant for any proper divisor d of k.

Original entry on oeis.org

14, 124, 585, 1016, 16748, 32085, 33892, 37882, 39962, 41925, 46665, 121605, 134589, 181305, 212175, 388455, 495465, 522488, 524224, 544065, 839865, 1061565, 1152921, 1165515, 1243275, 1247103, 1335411, 1676829, 1943638, 2151075, 2290869, 2478075, 2625514, 2673998
Offset: 1

Views

Author

Amiram Eldar, Mar 06 2025

Keywords

Comments

Numbers k such that k^2 is primitive abundant number (A091191).
If p is an odd Mersenne exponent (A174265), then 2^((p-1)/2) * (2^p-1) is a term.

Crossrefs

Subsequence of A381738.
A379950 is a subsequence.

Programs

  • Mathematica
    q[k_] := DivisorSigma[-1, k^2] > 2 &&  AllTrue[Divisors[k], DivisorSigma[-1, #*k] <= 2 || # == k &]; Select[Range[10^6], q]
  • PARI
    isok(k) = fordiv(k, d, if(d < k && sigma(d*k, -1) > 2, return(0))); sigma(k^2, -1) > 2;

A190213 Integers m such that m divides (2^m-2)^2 and (m-2)^((k-1)*(1+k*(m-1))) == 1 (mod k), where k = 2^m - 1.

Original entry on oeis.org

1, 3, 4, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839
Offset: 1

Views

Author

Alzhekeyev Ascar M, May 19 2011

Keywords

Comments

Original definition: let k=2^n-1 and m=1+(k-1)*(n-1), x=m*k and define remainders a and b via 2^(x-1) == (a+1) (mod x) and m^(x-1) == (b+1) (mod x). If a == 0 (mod k) and b == 0 (mod k), n is in the sequence.
Conjecture: All odd entries are also Mersenne exponents (A000043): primes n such that 2^n-1 is prime.
Any exceptions to the conjecture are larger than 10^5. - Charles R Greathouse IV, Oct 03 2022

Examples

			For n=3, k=2^3-1=7, m=1+6*2=13, x=m*k=13*7=91, 2^(x-1)==(a+1) (mod x) with 2^90 == (63+1)(mod 91), fixes a=63. m^(x-1) == (b+1) (mod x) with 13^90 == (77+1) (mod 91) fixes b=77. The two conditions are satisfied: 63 == 0 (mod 7) and 77 == 0 (mod 7). Therefore n=3 is in the sequence.
		

Crossrefs

A174265 is a subsequence.

Programs

  • Maple
    isA190213 := proc(n) local k,m,x,a,b ; k := 2^n-1 ; m := (k-1)*(n-1)+1 ; x := k*m ; a := modp( 2 &^ (x-1),x) -1 ; b := modp( m &^ (x-1),x) -1 ; return ( modp(a,k) = 0 and modp(b,k)=0 ) ; end proc:
    for n from 2 do if isA190213(n) then printf("%d,\n",n); end if; end do; # avoids n=1 and undefined 0^0, R. J. Mathar, Jun 11 2011
  • Mathematica
    okQ[n_] := Module[{k, m, x, a, b}, k = 2^n - 1; m = 1 + (k - 1)(n - 1); x = m k; a = PowerMod[2, x - 1, x] - 1; b = PowerMod[m, x - 1, x] - 1; Mod[a, k] == 0 && Mod[b, k] == 0];
    Reap[For[n = 1, n < 10^4, n++, If[okQ[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 30 2019 *)
  • PARI
    is(n)=my(k=2^n-1,m=(k-1)*(n-1)+1,e=m*k-1); Mod(2,k)^e==1 && Mod(m,k)^e==1 \\ Charles R Greathouse IV, Sep 16 2022

Extensions

a(20)-a(23) from Jean-François Alcover, Oct 30 2019
a(24)-a(28) from Charles R Greathouse IV, Sep 16 2022
a(29) from Charles R Greathouse IV, Sep 29 2022
a(30)-a(33) from Bill McEachen, Jul 30 2024
Definition simplified by Max Alekseyev, Dec 04 2024

A237499 Odious Mersenne exponents.

Original entry on oeis.org

2, 7, 13, 19, 31, 61, 107, 127, 521, 607, 1279, 3217, 11213, 21701, 44497, 132049, 216091, 756839, 1257787, 3021377, 6972593, 20996011, 24036583, 30402457, 37156667, 43112609, 82589933
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A000043 and A027697.

Programs

  • Mathematica
    Select[MersennePrimeExponent[Range[47]], OddQ @ DigitCount[#, 2][[1]] &] (* Amiram Eldar, Dec 10 2019 *)

Extensions

a(13) and a(18) inserted and more terms added by Amiram Eldar, Dec 10 2019
a(27) added by Harvey P. Dale, Feb 01 2025
Showing 1-3 of 3 results.