A174335 Upper bound in enumerating what majority decisions are possible with possible abstaining.
0, 16, 256, 2592, 24576, 240000, 2488320, 27659520, 330301440, 4232632320, 58060800000, 850068172800, 13243436236800, 218892235161600, 3827475696844800, 70614415872000000, 1371195958099968000
Offset: 0
Examples
a(4) = 16*(4^3)*(4!) = 24576.
References
- J. A. N. d. Condorcet. Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix. L'imprimerie royale, Paris, 1785.
Links
- P. Erdos and L. Moser, On the representation of directed graphs as unions of orderings, Magyar Tud. Akad. Mat. Kutats Int. Kvzl., 9:125-132, 1964.
- Paul Larson, Nick Matteo, Saharon Shelah, What majority decisions are possible with possible abstaining, arXiv:1003.2756 [math.CO], 2010.
- S. Shelah, What majority decisions are possible, Discrete Mathematics, 309(8): 2349-2364, 2009.
Programs
-
Mathematica
Table[16n^3 n!,{n,0,20}] (* Harvey P. Dale, Feb 25 2016 *)
-
PARI
a(n) = 16*n^3*n! \\ Michel Marcus, Jun 25 2015
Formula
a(n) = 16*A091363(n). - Michel Marcus, Jun 25 2015
Comments