A174341 a(n) = Numerator of Bernoulli(n, 1) + 1/(n+1).
2, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, -37, 1, 37, 1, -211, 1, 2311, 1, -407389, 1, 37153, 1, -1181819909, 1, 76977929, 1, -818946931, 1, 277930363757, 1, -84802531453217, 1, 90219075042851, 1, -711223555487930419, 1, 12696640293313423, 1, -6367871182840222481, 1, 35351107998094669831, 1, -83499808737903072705023, 1, 12690449182849194963361, 1
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- OEIS Wiki, Autosequence
Crossrefs
Programs
-
Magma
[2,1] cat [Numerator(Bernoulli(n)+1/(n+1)): n in [2..40]]; // Vincenzo Librandi, Jul 18 2019
-
Maple
A174341 := proc(n) bernoulli(n,1)+1/(n+1); numer(%) end proc: # R. J. Mathar, Nov 19 2010
-
Mathematica
a[n_] := Numerator[BernoulliB[n, 1] + 1/(n + 1)]; Table[a[n], {n, 0, 47}] (* Peter Luschny, Jul 13 2019 *)
-
PARI
B(n)=if(n!=1, bernfrac(n), -bernfrac(n)); a(n)=numerator(B(n) + 1/(n + 1)); for(n=0, 50, print1(a(n),", ")) \\ Indranil Ghosh, Jun 19 2017
-
PARI
a(n)=numerator(bernpol(n, 1) + 1/(n + 1)); \\ Michel Marcus, Jun 26 2025
-
Python
from sympy import bernoulli, Integer def a(n): return (bernoulli(n) + 1/Integer(n + 1)).numerator # Indranil Ghosh, Jun 19 2017
Extensions
Reformulation of the name by Peter Luschny, Jul 13 2019
Comments