cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174502 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A086903(n)) ), where A086903(n) = (4+sqrt(15))^n + (4-sqrt(15))^n.

Original entry on oeis.org

1, 6, 1, 60, 1, 486, 1, 3840, 1, 30246, 1, 238140, 1, 1874886, 1, 14760960, 1, 116212806, 1, 914941500, 1, 7203319206, 1, 56711612160, 1, 446489578086, 1, 3515205012540, 1, 27675150522246, 1, 217885999165440, 1, 1715412842801286, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 21 2010

Keywords

Examples

			Let L = Sum_{n>=1} 1/(n*A086903(n)) or, more explicitly,
L = 1/8 + 1/(2*62) + 1/(3*488) + 1/(4*3842) + 1/(5*30248) +...
so that L = 0.1338200441271648228100625767561479963630539052200...
then exp(L) = 1.1431870779045667085973926071888878662387686835715...
equals the continued fraction given by this sequence:
exp(L) = [1;6,1,60,1,486,1,3840,1,30246,1,238140,1,...]; i.e.,
exp(L) = 1 + 1/(6 + 1/(1 + 1/(60 + 1/(1 + 1/(486 + 1/(1 +...)))))).
Compare these partial quotients to A086903(n), n=1,2,3,...:
[8,62,488,3842,30248,238142,1874888,14760962,116212808,914941502,...].
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,9,0,-9,0,1},{1,6,1,60,1,486},50] (* Harvey P. Dale, Jun 09 2013 *)
  • PARI
    {a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((4+sqrt(15))^m+(4-sqrt(15))^m))));contfrac(exp(L))[n]}

Formula

a(2n-2) = 1, a(2n-1) = A086903(n) - 2, for n>=1 [conjecture].
The above conjectures are correct. See the Bala link for details. - Peter Bala, Jan 08 2013
a(n) = 9*a(n-2)-9*a(n-4)+a(n-6). G.f.: -(x^4+6*x^3-8*x^2+6*x+1) / ((x-1)*(x+1)*(x^4-8*x^2+1)). [Colin Barker, Jan 20 2013]