cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A174595 a(n) = 5*n^2/8 - n + 1/2 + (-1)^n*(-3*n^2/8 + n - 1/2).

Original entry on oeis.org

0, 0, 1, 4, 4, 16, 9, 36, 16, 64, 25, 100, 36, 144, 49, 196, 64, 256, 81, 324, 100, 400, 121, 484, 144, 576, 169, 676, 196, 784, 225, 900, 256, 1024, 289, 1156, 324, 1296, 361, 1444, 400, 1600, 441, 1764, 484, 1936, 529, 2116, 576, 2304, 625, 2500, 676, 2704, 729, 2916, 784, 3136, 841, 3364, 900
Offset: 0

Views

Author

Paul Curtz, Nov 29 2010

Keywords

Comments

Based on A174571.

Programs

  • Magma
    [5*n^2/8-n+1/2+(-1)^n*(-3*n^2/8+n-1/2): n in [0..60]]; // Vincenzo Librandi, Aug 04 2011
    
  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1},{0,0,1,4,4,16},70] (* Harvey P. Dale, Jun 26 2012 *)
    CoefficientList[Series[1/8 E^-x (-4 - 5 x - 3 x^2 + E^(2 x) (4 - 3 x + 5 x^2)), {x, 0, 50}], x]*Table[k!, {k, 0, 50}] (* Stefano Spezia, Nov 02 2018 *)
  • PARI
    vector(50, n, n--; (5*n^2 -8*n + 4 - (-1)^n*(3*n^2 - 8*n +4))/8) \\ G. C. Greubel, Nov 02 2018

Formula

a(n) = A029578(n)^2.
Interleaving of A000290 and 4*A000290.
G.f.: -x^2*(4*x+1)*(x^2+1) / ( (x-1)^3*(1+x)^3 ).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
E.g.f.: (1/8)*exp(-x)*(- 4 - 5*x - 3*x^2 +exp(2*x)*(4 - 3*x + 5*x^2)). - Stefano Spezia, Nov 02 2018
Showing 1-1 of 1 results.