cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A174473 G.f.: exp( Sum_{n>=1} A174937(n)*x^n/n ) where A174937(n) = Sum_{d|n} d^tau(d).

Original entry on oeis.org

1, 1, 3, 6, 25, 36, 294, 368, 1528, 2484, 9134, 14149, 309394, 338144, 1088916, 2036379, 8135079, 11985949, 85274614, 109840952, 443748960, 721070985, 2618157358, 4074809442, 52689585877, 60956862781, 202828562711
Offset: 0

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Comments

tau(n) = A000005(n) = the number of divisors of n.

Crossrefs

Cf. A174937, A000005 (tau).

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sumdiv(m,d,d^sigma(d,0)))+x*O(x^n)),n)}

A174472 a(n) = Sum_{d|n} d^sigma(d).

Original entry on oeis.org

1, 9, 82, 16393, 15626, 2176782426, 5764802, 35184372105225, 2541865828411, 1000000000000015634, 3138428376722, 1648446623609512543953220489306, 3937376385699290, 3214199700417740936756852426, 16834112196028232574462906332, 21267647932558653966460948148857618441
Offset: 1

Views

Author

Paul D. Hanna, Apr 04 2010

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^DivisorSigma[1, #] &]; Array[a, 16] (* Amiram Eldar, Oct 08 2021 *)
  • PARI
    {a(n)=sumdiv(n,d,d^sigma(d))}
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^sigma(k)*x^k/(1-x^k))) \\ Seiichi Manyama, Oct 14 2021

Formula

Logarithmic derivative of A174471.
G.f.: Sum_{k>=1} k^sigma(k) * x^k/(1 - x^k). - Seiichi Manyama, Oct 14 2021

A345270 a(n) = Sum_{d|n} d^tau(n/d).

Original entry on oeis.org

1, 3, 4, 9, 6, 20, 8, 33, 19, 40, 12, 108, 14, 68, 50, 161, 18, 225, 20, 278, 80, 148, 24, 850, 51, 200, 136, 600, 30, 1114, 32, 1089, 164, 328, 110, 3387, 38, 404, 218, 2450, 42, 3214, 44, 1892, 558, 580, 48, 12596, 99, 1409, 350, 2958, 54, 8630, 202, 6370, 428, 904, 60, 33042
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 12 2021

Keywords

Comments

If p is a prime, a(p) = Sum_{d|p} d^tau(p/d) = 1^2 + p^1 = p + 1.

Examples

			a(10) = Sum_{d|10} d^tau(10/d) = 1^4 + 2^2 + 5^2 + 10^1 = 40.
		

Crossrefs

Cf. A000005 (tau), A174937, A345271.

Programs

  • Mathematica
    Table[Sum[k^DivisorSigma[0, n/k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 60}]
  • PARI
    a(n) = sumdiv(n, d, d^numdiv(n/d)); \\ Michel Marcus, Oct 08 2021

Formula

a(n) = Sum_{d|n} (n/d)^tau(d). - Wesley Ivan Hurt, Jun 09 2023

A345271 a(n) = Sum_{d|n} n^tau(d).

Original entry on oeis.org

1, 6, 12, 84, 30, 1374, 56, 4680, 819, 10210, 132, 3008748, 182, 38822, 51090, 1118480, 306, 34123698, 380, 64168820, 195384, 235246, 552, 110267095704, 16275, 458354, 551880, 482528508, 870, 656102432730, 992, 1108378656, 1188132, 1338682, 1503110, 101564312008644
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 12 2021

Keywords

Comments

If p is prime, a(p) = Sum_{d|p} p^tau(d) = p^1 + p^2 = p*(p + 1).

Examples

			a(10) = Sum_{d|10} 10^tau(d) = 10^1 + 10^2 + 10^2 + 10^4 = 10210.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[n^DivisorSigma[0, k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 50}]
  • PARI
    a(n) = sumdiv(n, d, n^numdiv(d)); \\ Michel Marcus, Oct 08 2021

A348349 a(n) = Sum_{d|n} d^(tau(d) - 1).

Original entry on oeis.org

1, 3, 4, 19, 6, 222, 8, 531, 85, 1008, 12, 249070, 14, 2754, 3384, 66067, 18, 1889871, 20, 3201024, 9272, 10662, 24, 4586721006, 631, 17592, 19768, 17213138, 30, 21870004602, 32, 33620499, 35952, 39324, 42888, 2821112046175, 38, 54894, 59336, 163843201536
Offset: 1

Views

Author

Seiichi Manyama, Oct 14 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(DivisorSigma[0, #] - 1) &]; Array[a, 40] (* Amiram Eldar, Oct 14 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(numdiv(d)-1));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, k^(numdiv(k)-1)*x^k/(1-x^k)))

Formula

G.f.: Sum_{k>=1} k^(tau(k) - 1) * x^k/(1 - x^k).
If p is prime, a(p) = 1 + p.

A345273 a(n) = Sum_{d|n} (n-d)^tau(d).

Original entry on oeis.org

0, 1, 2, 7, 4, 30, 6, 107, 44, 98, 10, 2000, 12, 206, 258, 6035, 16, 21963, 18, 14664, 540, 542, 22, 3165444, 424, 770, 6434, 53384, 28, 544568, 30, 1403235, 1416, 1346, 1718, 225979931, 36, 1694, 2010, 65907940, 40, 2493140, 42, 301152, 860064, 2510, 46, 112291412012, 1812
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 12 2021

Keywords

Comments

If p is prime, a(p) = Sum_{d|p} (p-d)^tau(d) = (p-1)^1 + 0^2 = p-1.

Examples

			a(10) = Sum_{d|10} (10-d)^tau(d) = 9^1 + 8^2 + 5^2 + 0^4 = 9 + 64 + 25 = 98.
		

Crossrefs

Cf. A000005 (tau), A174937.

Programs

  • Mathematica
    Table[Sum[(n - k)^DivisorSigma[0, k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 50}]

A345274 a(n) = Sum_{d|n} (n-d)^tau(n/d).

Original entry on oeis.org

0, 1, 4, 31, 16, 650, 36, 2633, 548, 6650, 100, 1782390, 144, 28754, 38660, 799583, 256, 24192515, 324, 47154588, 160520, 195002, 484, 78424725898, 14224, 391370, 471124, 387887498, 784, 500247950884, 900, 912432417, 1049960, 1187234, 1338020, 78818475807611, 1296, 1875818
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 12 2021

Keywords

Comments

If p is prime, a(p) = Sum_{d|p} (p-d)^tau(p/d) = (p-1)^2 + 0^1 = (p-1)^2.

Examples

			a(10) = Sum_{d|10} (10-d)^tau(10/d) = 9^4 + 8^2 + 5^2 + 0^1 = 6650.
		

Crossrefs

Cf. A000005 (tau), A174937.

Programs

  • Mathematica
    Table[Sum[(n - k)^DivisorSigma[0, n/k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 50}]
Showing 1-7 of 7 results.