cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A174937 a(n) = Sum_{d|n} d^tau(d).

Original entry on oeis.org

1, 5, 10, 69, 26, 1310, 50, 4165, 739, 10030, 122, 2987358, 170, 38470, 50660, 1052741, 290, 34014263, 362, 64010094, 194540, 234382, 530, 110078305630, 15651, 457150, 532180, 481928838, 842, 656100061960
Offset: 1

Views

Author

Jaroslav Krizek and Paul D. Hanna, Apr 02 2010

Keywords

Comments

Here tau(n) = A000005(n) = the number of divisors of n.

Examples

			For n = 4, A007955(n) = b(n): a(4) = b(1)^2 + b(2)^2 + b(4)^2 = 1^2 + 2^2 + 8^2 = 69.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^DivisorSigma[0, #] &]; Array[a, 30] (* Amiram Eldar, Oct 08 2021 *)
  • PARI
    {a(n)=sumdiv(n,d,d^sigma(d,0))}
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k^numdiv(k)*x^k/(1-x^k))) \\ Seiichi Manyama, Oct 14 2021

Formula

Also a(n) = Sum_{d|n} A007955(d)^2, where A007955(m) = product of divisors of m.
Logarithmic derivative of A174473.
G.f.: Sum_{k>=1} k^tau(k) * x^k/(1 - x^k). - Seiichi Manyama, Oct 14 2021

A345270 a(n) = Sum_{d|n} d^tau(n/d).

Original entry on oeis.org

1, 3, 4, 9, 6, 20, 8, 33, 19, 40, 12, 108, 14, 68, 50, 161, 18, 225, 20, 278, 80, 148, 24, 850, 51, 200, 136, 600, 30, 1114, 32, 1089, 164, 328, 110, 3387, 38, 404, 218, 2450, 42, 3214, 44, 1892, 558, 580, 48, 12596, 99, 1409, 350, 2958, 54, 8630, 202, 6370, 428, 904, 60, 33042
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 12 2021

Keywords

Comments

If p is a prime, a(p) = Sum_{d|p} d^tau(p/d) = 1^2 + p^1 = p + 1.

Examples

			a(10) = Sum_{d|10} d^tau(10/d) = 1^4 + 2^2 + 5^2 + 10^1 = 40.
		

Crossrefs

Cf. A000005 (tau), A174937, A345271.

Programs

  • Mathematica
    Table[Sum[k^DivisorSigma[0, n/k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 60}]
  • PARI
    a(n) = sumdiv(n, d, d^numdiv(n/d)); \\ Michel Marcus, Oct 08 2021

Formula

a(n) = Sum_{d|n} (n/d)^tau(d). - Wesley Ivan Hurt, Jun 09 2023

A345895 a(n) = Sum_{d|n} n^sigma(d).

Original entry on oeis.org

1, 10, 84, 16452, 15630, 2176783854, 5764808, 35184374186504, 2541865834899, 1000000000001001010, 3138428376732, 1648446623609512552867179993036, 3937376385699302, 3214199700417740938226879430, 16834112196028232574474331890, 21267647932558653967613834469360799760
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 28 2021

Keywords

Examples

			a(4) = Sum_{d|4} 4^sigma(d) = 4^1 + 4^3 + 4^7 = 16452.
		

Crossrefs

Cf. A000203 (sigma), A104128, A174472, A345271.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, n^DivisorSigma[1, #] &]; Array[a, 16] (* Amiram Eldar, Jun 29 2021 *)
  • PARI
    a(n) = sumdiv(n, d, n^sigma(d)); \\ Michel Marcus, Jun 29 2021

Formula

a(prime(n)) = A104128(n). - Michel Marcus, Jun 29 2021
Showing 1-3 of 3 results.