A175166 a(n) = 64*(2^n - 1).
0, 64, 192, 448, 960, 1984, 4032, 8128, 16320, 32704, 65472, 131008, 262080, 524224, 1048512, 2097088, 4194240, 8388544, 16777152, 33554368, 67108800, 134217664, 268435392, 536870848, 1073741760
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
I:=[0,64]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
-
Mathematica
LinearRecurrence[{3,-2},{0,64},30] (* Harvey P. Dale, Apr 08 2015 *)
-
Python
def A175166(n): return (1<
Chai Wah Wu, Jun 27 2023 -
Sage
[64*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
Formula
a(n) = 2^(n+6) - 64.
a(n) = A173787(n+6, 6).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=64. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 64*x/((1-x)*(1-2*x)).
E.g.f.: 64*(exp(2*x) - exp(x)). (End)