A019589
Number of nondecreasing sequences that are differences of two permutations of 1,2,...,n.
Original entry on oeis.org
1, 1, 2, 5, 16, 59, 246, 1105, 5270, 26231, 135036, 713898, 3857113, 21220020, 118547774, 671074583
Offset: 0
Alex Postnikov (apost(AT)math.mit.edu)
- Olivier Gérard and Karol Penson, Set partitions, multiset permutations and bi-permutations, in preparation.
- C. Bebeacua, T. Mansour, A. Postnikov and S. Severini, On the X-rays of permutations, arXiv:math/0506334 [math.CO], 2005.
- David A. Corneth, Nondecreasing sequences for a(n) where n = 0..8.
- J.-P. Davalan, Permutations et tomographie - X-rays.
- James D. Louck, Power of a determinant with two physical applications, Internat. J. Math. & Math. Sci., Vol. 22, No 4(1999) pp. 745-759 - S 0161-1712(99)22745-7
-
with(LinearAlgebra): f:=n->nops([coeffs(Permanent(Matrix(n, (i, j) -> a[i+j])))]): [seq(f(n), n=1..10)]; # Vaclav Kotesovec, Mar 29 2019
-
a[n_] := Table[b[i+j], {i, n}, {j, n}] // Permanent // Expand // Length;
Array[a, 10, 0] (* Jean-François Alcover, May 29 2019, after Vaclav Kotesovec *)
-
a(n) = my(l=List(), v=[1..n]);for(i=0, n!-1, listput(l, vecsort(v-numtoperm(n,i)))); listsort(l, 1); #l
-
import itertools
def a019589(n):
s = set()
for p in itertools.permutations(range(n)):
s.add(tuple(sorted([k - p[k] for k in range(n)])))
return len(s)
print([a019589(n) for n in range(10)])
# Bert Dobbelaere, Jan 19 2019
A362968
Number of integral points in 2 * permutohedron of order n.
Original entry on oeis.org
1, 3, 19, 201, 3081, 62683, 1598955, 49180113, 1773405649, 73410669171, 3432267261699, 178922825114905, 10291053760222041, 647436905815864011, 44229766376059342171, 3260749830852693615777, 258039101519624535653025
Offset: 1
-
w := LambertW(-2*x): egf := exp(-w * (2 + w) / 4): ser := series(egf, x, 20):
seq(n! * coeff(ser, x, n), n = 1..17); # Peter Luschny, Jun 19 2023
-
a362968(n) = my(x=y+O(y^(n+1))); n! * polcoef( exp(-lambertw(-2*x)/2 - lambertw(-2*x)^2/4), n );
A381244
Number of regions in the arrangement of hyperplanes corresponding to the nonzero differences of two permutations of order n.
Original entry on oeis.org
1, 1, 2, 12, 3696
Offset: 0
-
def a381244(n): return HyperplaneArrangements(QQ,tuple(f'x{i}' for i in range(n)))([[list(r),0] for p in Permutations(n) for r in Permutations([p[i]-i-1 for i in range(n)]) if vector(r)>0]).n_regions()
A381243
Number of hyperplanes defined by the nonzero differences of two permutations of order n.
Original entry on oeis.org
0, 0, 1, 6, 85, 1370, 30481, 778610, 24409645, 881325366, 36635553601, 1713454403210, 89415912126223, 5143372266050837, 323667807885619744, 22112062644980805684
Offset: 0
A381339
Number of vector differences between two permutations of order n, up to multiplication by nonzero rational numbers and permutations of the components.
Original entry on oeis.org
1, 1, 2, 3, 9, 28, 128, 539, 2651, 13000, 67466, 355381, 1926343, 10590537, 59234734, 335302599
Offset: 0
For n = 3, there are A019589(3) = 5 difference vectors up to permutation of components: (-2, 0, 2), (-2, 1, 1), (-1, -1, 2), (-1, 0, 1), and (0, 0, 0). However, (-2, 0, 2) and (-1, 0, 1) are the same up to a factor 2, and (-2, 1, 1) and (-1, -1, 2) are the same up to negation and reversing the order. Hence, a(3) = 3.
A384035
Number of vector differences between two permutations of order n, up to multiplication by positive rational numbers and permutations of the components.
Original entry on oeis.org
1, 1, 2, 4, 13, 49, 228, 1034, 5133, 25710, 133872, 708976, 3846150, 21170077, 118429072, 670537495
Offset: 0
For n = 3, there are A019589(3) = 5 difference vectors up to permutation of components: (-2, 0, 2), (-2, 1, 1), (-1, -1, 2), (-1, 0, 1), and (0, 0, 0). However, (-2, 0, 2) and (-1, 0, 1) are the same up to a factor 2. Hence, a(3) = 4.
Showing 1-6 of 6 results.
Comments