cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A175176 Number of vector sums of two permutations of 1,2,...,n.

Original entry on oeis.org

1, 1, 3, 19, 201, 3081, 62663, 1598185, 49158651, 1772832643, 73394322615, 3431751900897, 178904412061235, 10290301519034057, 647401635395456919, 44227879174393279133
Offset: 0

Views

Author

R. H. Hardin, Feb 28 2010

Keywords

Comments

Also, number of vector differences of two permutations of 1,2,...,n.
Number of distinct sums up to the order of components is given by A019589. - Max Alekseyev, Jun 19 2023
a(n) <= A362968(n). - Max Alekseyev, Jun 19 2023

Examples

			The permutation sums for n=2 are (1,2) + (1,2) = (2,4); (1,2) + (2,1) = (2,1) + (1,2) = (3,3); (2,1) + (2,1) = (4,2); so a(2)=3.
		

Crossrefs

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 19 2023
a(11)-a(15) from Max Alekseyev, Jul 02 2023

A019448 Number of monomials in expansion of determinant of an n X n Hankel matrix [ t(i+j) ] in terms of its entries.

Original entry on oeis.org

1, 1, 2, 5, 16, 58, 231, 1016, 4782, 23653, 121727, 648611, 3541871, 19713695
Offset: 0

Views

Author

Herbert S. Wilf

Keywords

Crossrefs

Programs

  • Maple
    with(linalg): A019448 := proc(n) local i, j, m; m := array(1..n, 1..n); for i from 1 to n do for j from 1 to n do m[i, j] := a[i+j] od od; nops([coeffs(det(m))]); end; # Jeffrey Shallit, Jun 08 2000
    with(LinearAlgebra): f:=n->nops([coeffs(Determinant(Matrix(n, (i, j) -> a[i+j] )))]): [seq(f(n), n=0..10)]; # Vaclav Kotesovec, Mar 29 2019
  • Mathematica
    f[n_] := Length@ Expand@ Det@ Table[t[i + j], {i, n}, {j, n}]; Do[ Print@ f@n, {n, 11}] (* Robert G. Wilson v, Sep 17 2006 *)

Extensions

a(8)-a(9) from Jeffrey Shallit, Jun 08 2000
a(10)-a(11) from Robert G. Wilson v, Sep 17 2006
a(12) from Roman Pearce, Aug 30 2014
a(13) from Vaclav Kotesovec, Mar 20 2019
a(0)=1 prepended by Alois P. Heinz, Jan 08 2025

A362967 Number of nondecreasing partitions of n^2 into n parts from the intervals [1,n], [2,n+1], ..., [n,2n-1], respectively.

Original entry on oeis.org

1, 1, 2, 5, 17, 66, 294, 1393, 6965, 36111, 192850, 1053894, 5871306, 33234990, 190704140, 1107086841, 6492325565, 38412063755, 229052915708, 1375396927729, 8310509070747, 50496841617102, 308394124109340, 1892137615326526, 11658149626059204, 72108088307308032, 447590893613564372
Offset: 0

Views

Author

Max Alekseyev, Jun 16 2023

Keywords

Comments

a(n) <= A039744(n); a(n) <= A077045(n); a(n) >= A019589(n).

Crossrefs

Programs

  • Sage
    def a362967(n): return Partitions(n^2, length=n, inner=range(n,0,-1), outer=range(2*n-1,n-1,-1)).cardinality()

A290052 Number of X-rays of n X n binary matrices with exactly n ones.

Original entry on oeis.org

1, 1, 4, 23, 139, 860, 5393, 34142, 217717, 1396346, 8997695, 58205686, 377775385, 2458841504, 16043226825, 104901986083, 687221188145, 4509605878736, 29636894936761, 195035340954186, 1285062484293880, 8476508261617168, 55969236979211755, 369900194873712830
Offset: 0

Views

Author

Alois P. Heinz, Jul 19 2017

Keywords

Comments

The X-ray of a matrix is defined as the sequence of antidiagonal sums.

Examples

			a(0) = 1: [].
a(1) = 1: 1.
a(2) = 4: 011, 020, 101, 110.
a(3) = 23: 00021, 00111, 00120, 00201, 00210, 00300, 01011, 01020, 01101, 01110, 01200, 02001, 02010, 02100, 10011, 10020, 10101, 10110, 10200, 11001, 11010, 11100, 12000.
		

Crossrefs

Main diagonal of A290057.

Programs

  • Maple
    b:= proc(n, i, t) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
          add(b(n-j, i-t, 1-t), j=0..min(i, n)))))(i*(i+1-t))
        end:
    a:= n-> b(n$2, 1):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Function[m, If[n > m, 0, If[n == m, 1, Sum[b[n - j, i - t, 1 - t], {j, 0, Min[i, n]}]]]][i*(i + 1 - t)];
    a[n_] := b[n, n, 1];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)

Formula

A019589(n) <= a(n) <= A014062(n).
a(n) ~ c * 3^(3*n) / (2^(2*n) * sqrt(n)), where c = 0.153294749730773567280925277269616968259180871352428154276351832424636097919... - Vaclav Kotesovec, Jul 22 2017

A381244 Number of regions in the arrangement of hyperplanes corresponding to the nonzero differences of two permutations of order n.

Original entry on oeis.org

1, 1, 2, 12, 3696
Offset: 0

Views

Author

Max Alekseyev, Feb 17 2025

Keywords

Comments

The number of distinct hyperplanes is given by A381243.

Crossrefs

Programs

  • Sage
    def a381244(n): return HyperplaneArrangements(QQ,tuple(f'x{i}' for i in range(n)))([[list(r),0] for p in Permutations(n) for r in Permutations([p[i]-i-1 for i in range(n)]) if vector(r)>0]).n_regions()

A086647 Number of monomials in expansion of permanent of an n X n Toeplitz matrix [t(|i-j|) ] in terms of its entries.

Original entry on oeis.org

1, 2, 4, 12, 36, 128, 460, 1750, 6551, 25108, 94977, 363533, 1378573, 5273561
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 26 2003

Keywords

Crossrefs

Programs

  • Maple
    with(LinearAlgebra): f:=n->nops([coeffs(Permanent(Matrix(n, (i, j) -> a[abs(i-j)])))]): [seq(f(n), n=1..12)]; # Vaclav Kotesovec, Mar 29 2019
  • Mathematica
    Permanent[m_List] := With[{v = Array[x, Length@m]}, Coefficient[Times @@ (m . v), Times @@ v]]; ; f[n_] := Length@Expand@Permanent@Table[t[Abs[i - j]], {i, n}, {j, n}]; Array[f, 11] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Sep 22 2006
a(12) from Vaclav Kotesovec, Mar 20 2019
a(13)-a(14) from Vaclav Kotesovec, Mar 29 2019

A289971 Number of permutations of [n] determined by their antidiagonal sums.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 49, 114, 277, 665, 1608, 3875
Offset: 0

Views

Author

Martin Rubey, Jul 16 2017

Keywords

Crossrefs

Programs

  • Mathematica
    xray[perm_List] := Module[{P, n = Length[perm]}, P[, ] = 0; Thread[perm -> Range[n]] /. Rule[i_, j_] :> Set[P[i, j], 1]; Table[Sum[P[i - j + 1, j], {j, Max[1, i - n + 1], Min[i, n]}], {i, 1, 2n - 1}]];
    a[n_] := xray /@ Permutations[Range[n]] // Tally // Count[#, {_List, 1}]&;
    Do[Print[n, " ", a[n]], {n, 0, 10}] (* Jean-François Alcover, Feb 28 2020 *)
  • Sage
    def X_ray(pi):
        P = Permutation(pi).to_matrix()
        n = P.nrows()
        return tuple(sum(P[k-1-j][j] for j in range(max(0, k-n), min(k,n)))
                     for k in range(1,2*n))
    @cached_function
    def X_rays(n):
        return sorted(X_ray(pi) for pi in Permutations(n))
    def statistic(pi): return X_rays(pi.size()).count(X_ray(pi))
    [[statistic(pi) for pi in Permutations(n)].count(1) for n in range(7)]

Extensions

a(8)-a(11) from Alois P. Heinz, Jul 24 2017

A381243 Number of hyperplanes defined by the nonzero differences of two permutations of order n.

Original entry on oeis.org

0, 0, 1, 6, 85, 1370, 30481, 778610, 24409645, 881325366, 36635553601, 1713454403210, 89415912126223, 5143372266050837, 323667807885619744, 22112062644980805684
Offset: 0

Views

Author

Max Alekseyev, Feb 17 2025

Keywords

Comments

Each of A175176(n) - 1 nonzero differences between two permutations (viewed as vectors) defines a hyperplane in the n-dimensional space. a(n) gives the number of pairwise distinct hyperplanes among them.

Crossrefs

A381339 Number of vector differences between two permutations of order n, up to multiplication by nonzero rational numbers and permutations of the components.

Original entry on oeis.org

1, 1, 2, 3, 9, 28, 128, 539, 2651, 13000, 67466, 355381, 1926343, 10590537, 59234734, 335302599
Offset: 0

Views

Author

Max Alekseyev, Feb 20 2025

Keywords

Comments

Nonzero difference vectors are associated with their images in the projective space, and in addition we do not distinguish vectors that can be permuted one into the other. In the affine space, their number (including zero vector) is given by A019589, implying that a(n) <= A019589(n). Nonzero difference vectors in the projective space are counted by A381243.

Examples

			For n = 3, there are A019589(3) = 5 difference vectors up to permutation of components: (-2, 0, 2), (-2, 1, 1), (-1, -1, 2), (-1, 0, 1), and (0, 0, 0). However, (-2, 0, 2) and (-1, 0, 1) are the same up to a factor 2, and (-2, 1, 1) and (-1, -1, 2) are the same up to negation and reversing the order. Hence, a(3) = 3.
		

Crossrefs

A384035 Number of vector differences between two permutations of order n, up to multiplication by positive rational numbers and permutations of the components.

Original entry on oeis.org

1, 1, 2, 4, 13, 49, 228, 1034, 5133, 25710, 133872, 708976, 3846150, 21170077, 118429072, 670537495
Offset: 0

Views

Author

Max Alekseyev, May 17 2025

Keywords

Examples

			For n = 3, there are A019589(3) = 5 difference vectors up to permutation of components: (-2, 0, 2), (-2, 1, 1), (-1, -1, 2), (-1, 0, 1), and (0, 0, 0). However, (-2, 0, 2) and (-1, 0, 1) are the same up to a factor 2. Hence, a(3) = 4.
		

Crossrefs

Showing 1-10 of 10 results.