A175176
Number of vector sums of two permutations of 1,2,...,n.
Original entry on oeis.org
1, 1, 3, 19, 201, 3081, 62663, 1598185, 49158651, 1772832643, 73394322615, 3431751900897, 178904412061235, 10290301519034057, 647401635395456919, 44227879174393279133
Offset: 0
The permutation sums for n=2 are (1,2) + (1,2) = (2,4); (1,2) + (2,1) = (2,1) + (1,2) = (3,3); (2,1) + (2,1) = (4,2); so a(2)=3.
A019448
Number of monomials in expansion of determinant of an n X n Hankel matrix [ t(i+j) ] in terms of its entries.
Original entry on oeis.org
1, 1, 2, 5, 16, 58, 231, 1016, 4782, 23653, 121727, 648611, 3541871, 19713695
Offset: 0
-
with(linalg): A019448 := proc(n) local i, j, m; m := array(1..n, 1..n); for i from 1 to n do for j from 1 to n do m[i, j] := a[i+j] od od; nops([coeffs(det(m))]); end; # Jeffrey Shallit, Jun 08 2000
with(LinearAlgebra): f:=n->nops([coeffs(Determinant(Matrix(n, (i, j) -> a[i+j] )))]): [seq(f(n), n=0..10)]; # Vaclav Kotesovec, Mar 29 2019
-
f[n_] := Length@ Expand@ Det@ Table[t[i + j], {i, n}, {j, n}]; Do[ Print@ f@n, {n, 11}] (* Robert G. Wilson v, Sep 17 2006 *)
A362967
Number of nondecreasing partitions of n^2 into n parts from the intervals [1,n], [2,n+1], ..., [n,2n-1], respectively.
Original entry on oeis.org
1, 1, 2, 5, 17, 66, 294, 1393, 6965, 36111, 192850, 1053894, 5871306, 33234990, 190704140, 1107086841, 6492325565, 38412063755, 229052915708, 1375396927729, 8310509070747, 50496841617102, 308394124109340, 1892137615326526, 11658149626059204, 72108088307308032, 447590893613564372
Offset: 0
-
def a362967(n): return Partitions(n^2, length=n, inner=range(n,0,-1), outer=range(2*n-1,n-1,-1)).cardinality()
A290052
Number of X-rays of n X n binary matrices with exactly n ones.
Original entry on oeis.org
1, 1, 4, 23, 139, 860, 5393, 34142, 217717, 1396346, 8997695, 58205686, 377775385, 2458841504, 16043226825, 104901986083, 687221188145, 4509605878736, 29636894936761, 195035340954186, 1285062484293880, 8476508261617168, 55969236979211755, 369900194873712830
Offset: 0
a(0) = 1: [].
a(1) = 1: 1.
a(2) = 4: 011, 020, 101, 110.
a(3) = 23: 00021, 00111, 00120, 00201, 00210, 00300, 01011, 01020, 01101, 01110, 01200, 02001, 02010, 02100, 10011, 10020, 10101, 10110, 10200, 11001, 11010, 11100, 12000.
-
b:= proc(n, i, t) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
add(b(n-j, i-t, 1-t), j=0..min(i, n)))))(i*(i+1-t))
end:
a:= n-> b(n$2, 1):
seq(a(n), n=0..30);
-
b[n_, i_, t_] := b[n, i, t] = Function[m, If[n > m, 0, If[n == m, 1, Sum[b[n - j, i - t, 1 - t], {j, 0, Min[i, n]}]]]][i*(i + 1 - t)];
a[n_] := b[n, n, 1];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *)
A381244
Number of regions in the arrangement of hyperplanes corresponding to the nonzero differences of two permutations of order n.
Original entry on oeis.org
1, 1, 2, 12, 3696
Offset: 0
-
def a381244(n): return HyperplaneArrangements(QQ,tuple(f'x{i}' for i in range(n)))([[list(r),0] for p in Permutations(n) for r in Permutations([p[i]-i-1 for i in range(n)]) if vector(r)>0]).n_regions()
A086647
Number of monomials in expansion of permanent of an n X n Toeplitz matrix [t(|i-j|) ] in terms of its entries.
Original entry on oeis.org
1, 2, 4, 12, 36, 128, 460, 1750, 6551, 25108, 94977, 363533, 1378573, 5273561
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 26 2003
-
with(LinearAlgebra): f:=n->nops([coeffs(Permanent(Matrix(n, (i, j) -> a[abs(i-j)])))]): [seq(f(n), n=1..12)]; # Vaclav Kotesovec, Mar 29 2019
-
Permanent[m_List] := With[{v = Array[x, Length@m]}, Coefficient[Times @@ (m . v), Times @@ v]]; ; f[n_] := Length@Expand@Permanent@Table[t[Abs[i - j]], {i, n}, {j, n}]; Array[f, 11] (* Robert G. Wilson v *)
A289971
Number of permutations of [n] determined by their antidiagonal sums.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 49, 114, 277, 665, 1608, 3875
Offset: 0
- C. Bebeacua, T. Mansour, A. Postnikov, and S. Severini, On the X-rays of permutations, arXiv:math/0506334 [math.CO], 2005.
- FindStat - Combinatorial Statistic Finder, The number of permutations with the same antidiagonal sums.
- Martin Rubey, Alternating Sign Matrices Through X-Rays, J. Int. Seq., Vol. 24 (2021), Article 21.6.5.
-
xray[perm_List] := Module[{P, n = Length[perm]}, P[, ] = 0; Thread[perm -> Range[n]] /. Rule[i_, j_] :> Set[P[i, j], 1]; Table[Sum[P[i - j + 1, j], {j, Max[1, i - n + 1], Min[i, n]}], {i, 1, 2n - 1}]];
a[n_] := xray /@ Permutations[Range[n]] // Tally // Count[#, {_List, 1}]&;
Do[Print[n, " ", a[n]], {n, 0, 10}] (* Jean-François Alcover, Feb 28 2020 *)
-
def X_ray(pi):
P = Permutation(pi).to_matrix()
n = P.nrows()
return tuple(sum(P[k-1-j][j] for j in range(max(0, k-n), min(k,n)))
for k in range(1,2*n))
@cached_function
def X_rays(n):
return sorted(X_ray(pi) for pi in Permutations(n))
def statistic(pi): return X_rays(pi.size()).count(X_ray(pi))
[[statistic(pi) for pi in Permutations(n)].count(1) for n in range(7)]
A381243
Number of hyperplanes defined by the nonzero differences of two permutations of order n.
Original entry on oeis.org
0, 0, 1, 6, 85, 1370, 30481, 778610, 24409645, 881325366, 36635553601, 1713454403210, 89415912126223, 5143372266050837, 323667807885619744, 22112062644980805684
Offset: 0
A381339
Number of vector differences between two permutations of order n, up to multiplication by nonzero rational numbers and permutations of the components.
Original entry on oeis.org
1, 1, 2, 3, 9, 28, 128, 539, 2651, 13000, 67466, 355381, 1926343, 10590537, 59234734, 335302599
Offset: 0
For n = 3, there are A019589(3) = 5 difference vectors up to permutation of components: (-2, 0, 2), (-2, 1, 1), (-1, -1, 2), (-1, 0, 1), and (0, 0, 0). However, (-2, 0, 2) and (-1, 0, 1) are the same up to a factor 2, and (-2, 1, 1) and (-1, -1, 2) are the same up to negation and reversing the order. Hence, a(3) = 3.
A384035
Number of vector differences between two permutations of order n, up to multiplication by positive rational numbers and permutations of the components.
Original entry on oeis.org
1, 1, 2, 4, 13, 49, 228, 1034, 5133, 25710, 133872, 708976, 3846150, 21170077, 118429072, 670537495
Offset: 0
For n = 3, there are A019589(3) = 5 difference vectors up to permutation of components: (-2, 0, 2), (-2, 1, 1), (-1, -1, 2), (-1, 0, 1), and (0, 0, 0). However, (-2, 0, 2) and (-1, 0, 1) are the same up to a factor 2. Hence, a(3) = 4.
Showing 1-10 of 10 results.
Comments