A175200 Numbers k such that rad(k) divides sigma(k).
1, 6, 24, 28, 40, 54, 96, 120, 135, 216, 224, 234, 270, 360, 384, 486, 496, 540, 588, 600, 640, 672, 864, 891, 936, 1000, 1080, 1350, 1372, 1521, 1536, 1638, 1782, 1792, 1920, 1944, 2016, 2160, 2176, 3000, 3240, 3375, 3402, 3456, 3564, 3724, 3744, 3780, 4320
Offset: 1
Keywords
Examples
rad(6) = 6, sigma(6) = 12 = 6*2. rad(24) = 6, sigma(24) = 60 = 6*10. rad(43875) = 195, sigma(43875) = 87360 = 195*448.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 827.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Paul Pollack and Carl Pomerance, Prime-Perfect Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 12A, Paper A14, 2012.
Programs
-
Magma
[n: n in [1..5000] | IsZero(DivisorSigma(1, n)^n mod n)];// Vincenzo Librandi, Aug 07 2018
-
Maple
for n from 1 to 5000 do : p1:= ifactors(n)[2] :p2 :=mul(p1[i][1], i=1..nops(p1)): if irem(sigma(n),p2) =0 then print (n): else fi: od :
-
Mathematica
Select[Range@5000, Divisible[DivisorSigma[1, #]^#, # ]&] (* Vincenzo Librandi, Aug 07 2018 *)
-
PARI
isok(n) = {fs = Set(factor(sigma(n))[,1]); fn = Set(factor(n)[,1]); fn == setintersect(fn, fs);} \\ Michel Marcus, Nov 03 2015
Comments