cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A007691 Multiply-perfect numbers: n divides sigma(n).

Original entry on oeis.org

1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608
Offset: 1

Views

Author

Keywords

Comments

sigma(n)/n is in A054030.
Also numbers such that the sum of the reciprocals of the divisors is an integer. - Harvey P. Dale, Jul 24 2001
Luca's solution of problem 11090, which proves that for k>1 there are an infinite number of n such that n divides sigma_k(n), does not apply to this sequence. However, it is conjectured that this sequence is also infinite. - T. D. Noe, Nov 04 2007
Numbers k such that sigma(k) is divisible by all divisors of k, subsequence of A166070. - Jaroslav Krizek, Oct 06 2009
A017666(a(n)) = 1. - Reinhard Zumkeller, Apr 06 2012
Bach, Miller, & Shallit show that this sequence can be recognized in polynomial time with arbitrarily small error by a probabilistic Turing machine; that is, this sequence is in BPP. - Charles R Greathouse IV, Jun 21 2013
Conjecture: If n is such that 2^n-1 is in A066175 then a(n) is a triangular number. - Ivan N. Ianakiev, Aug 26 2013
Conjecture: Every multiply-perfect number is practical (A005153). I've verified this conjecture for the first 5261 terms with abundancy > 2 using Achim Flammenkamp's data. The even perfect numbers are easily shown to be practical, but every practical number > 1 is even, so a weak form says every even multiply-perfect number is practical. - Jaycob Coleman, Oct 15 2013
Numbers such that A054024(n) = 0. - Michel Marcus, Nov 16 2013
Numbers n such that k(n) = A229110(n) = antisigma(n) mod n = A024816(n) mod n = A000217(n) mod n = (n(n+1)/2) mod n = A142150(n). k(n) = n/2 for even n; k(n) = 0 for odd n (for number 1 and eventually odd multiply-perfect numbers n > 1). - Jaroslav Krizek, May 28 2014
The only terms m > 1 of this sequence that are not in A145551 are m for which sigma(m)/m is not a divisor of m. Conjecture: after 1, A323653 lists all such m (and no other numbers). - Antti Karttunen, Mar 19 2021

Examples

			120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 176.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chapter 15, pp. 82-88, Belin-Pour La Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 141-148.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 135-136.

Crossrefs

Complement is A054027. Cf. A000203, A054030.
Cf. A000396, A005820, A027687, A046060, A046061, for subsequences of terms with quotient sigma(n)/n = 2..6.
Subsequence of the following sequences: A011775, A071707, A083865, A089748 (after the initial 1), A102783, A166070, A175200, A225110, A226476, A237719, A245774, A246454, A259307, A263928, A282775, A323652, A336745, A340864. Also conjectured to be a subsequence of A005153, of A307740, and after 1 also of A295078.
Various number-theoretical functions applied to these numbers: A088843 [tau], A098203 [phi], A098204 [gcd(a(n),phi(a(n)))], A134665 [2-adic valuation], A307741 [sigma], A308423 [product of divisors], A320024 [the odd part], A134740 [omega], A342658 [bigomega], A342659 [smallest prime not dividing], A342660 [largest prime divisor].
Positions of ones in A017666, A019294, A094701, A227470, of zeros in A054024, A082901, A173438, A272008, A318996, A326194, A341524. Fixed points of A009194.
Cf. A069926, A330746 (left inverses, when applied to a(n) give n).
Cf. (other related sequences) A007539, A066135, A066961, A093034, A094467, A134639, A145551, A019278, A194771 [= 2*a(n)], A219545, A229110, A262432, A335830, A336849, A341608.

Programs

  • Haskell
    a007691 n = a007691_list !! (n-1)
    a007691_list = filter ((== 1) . a017666) [1..]
    -- Reinhard Zumkeller, Apr 06 2012
    
  • Mathematica
    Do[If[Mod[DivisorSigma[1, n], n] == 0, Print[n]], {n, 2, 2*10^11}] (* or *)
    Transpose[Select[Table[{n, DivisorSigma[-1, n]}, {n, 100000}], IntegerQ[ #[[2]] ]& ] ][[1]]
    (* Third program: *)
    Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] (* Michael De Vlieger, Mar 19 2021 *)
  • PARI
    for(n=1,1e6,if(sigma(n)%n==0, print1(n", ")))
    
  • Python
    from sympy import divisor_sigma as sigma
    def ok(n): return sigma(n, 1)%n == 0
    print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021

Extensions

More terms from Jud McCranie and then from David W. Wilson.
Incorrect comment removed and the crossrefs-section reorganized by Antti Karttunen, Mar 20 2021

A027598 Numbers k such that the set of prime divisors of k is equal to the set of prime divisors of sigma(k).

Original entry on oeis.org

1, 6, 28, 120, 270, 496, 672, 1080, 1638, 1782, 3780, 8128, 18600, 20580, 24948, 26208, 30240, 32640, 32760, 35640, 41850, 44226, 55860, 66960, 164640, 167400, 185220, 199584, 273000, 293760, 401310, 441936, 446880, 502740, 523776, 614250, 707616, 802620, 819000
Offset: 1

Views

Author

Keywords

Comments

Multiplicities are ignored.
All even perfect numbers are in the sequence. It seems that 1 is the only odd term of the sequence. - Farideh Firoozbakht, Jul 01 2008
sigma() is the multiplicative sum-of-divisors function. - Walter Nissen, Dec 16 2009
Pollack and Pomerance call these "prime-perfect numbers" and show that there are << x^(1/3+e) of these up to x for any e > 0. - Charles R Greathouse IV, May 09 2013
Except for unity for the obvious reason, the primitive terms are the perfect numbers (A000396). - Robert G. Wilson v, Feb 19 2019
If an odd term > 1 exists, it is larger than 5*10^23. - Giovanni Resta, Jun 02 2020

Examples

			273000 = 2^3*3*5^3*7*13 and sigma(273000) = 1048320 = 2^8*3^2*5*7*13 so 273000 is in the sequence.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B19.

Crossrefs

Intersection of A105402 and A175200. - Amiram Eldar, Jun 02 2020

Programs

  • GAP
    Filtered([1..1000000],n->Set(Factors(n))=Set(Factors(Sigma(n)))); # Muniru A Asiru, Feb 21 2019
  • Mathematica
    Select[Range[1000000], Transpose[FactorInteger[#]][[1]] == Transpose[FactorInteger[DivisorSigma[1, #]]][[1]] &] (* T. D. Noe, Dec 08 2012 *)
  • PARI
    a(n) = {for (i=1, n, fn = factor(i); fs = factor(sigma(i)); if (fn[,1] == fs[,1], print1(i, ", ")););} \\ Michel Marcus, Nov 18 2012
    
  • PARI
    is(n)=my(f=factor(n),fs=[],t);for(i=1,#f[,1], t=factor((f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1))[,1]; fs=vecsort(concat(fs,t~),,8); if(#setminus(fs,f[,1]~), return(0))); fs==f[,1]~ \\ Charles R Greathouse IV, May 09 2013
    

Extensions

Edited by N. J. A. Sloane, Jul 12 2008 at the suggestion of R. J. Mathar

A336550 Numbers k such that A007947(k) divides sigma(k) and A003557(k)-1 either divides A326143(k) [= A001065(k) - A007947(k)], or both are zero.

Original entry on oeis.org

6, 24, 28, 96, 120, 234, 384, 496, 936, 1536, 1638, 6144, 8128, 24576, 42588, 98304, 393216, 1089270, 1572864, 6291456, 25165824, 33550336, 100663296, 115048440, 402653184, 1185125760, 1610612736
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Numbers k such that gcd(sigma(k)-A007947(k), A007947(k)) == A007947(k) are those in A175200. These are equal to k such that gcd(A326143(k), A007947(k)) = gcd(sigma(k)-A007947(k)-k, A007947(k)) are equal to A007947(k).
Sequence is infinite because all numbers of the form 6*4^n (A002023) are present.
Question: Are there any odd terms?

Crossrefs

Intersection of A175200 and A336552.
Cf. A000396, A002023, A326145 (subsequences).
Cf. also A336641 for a similar construction.

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    isA336550(n) = { my(r=A007947(n), s=sigma(n), u=((n/r)-1)); (!(s%r) && (gcd(u,(s-r-n))==u)); };

A263928 Integers m such that sigma(m)^2 is divisible by m.

Original entry on oeis.org

1, 6, 24, 28, 120, 224, 234, 270, 496, 588, 600, 672, 864, 1080, 1521, 1638, 1782, 2016, 3724, 4320, 4680, 5733, 6048, 6200, 6552, 7128, 8128, 11172, 11466, 15872, 17280, 18144, 18600, 18620, 21600, 22932, 26208, 26460, 27000, 30240, 32640, 32760, 33516, 35640
Offset: 1

Views

Author

Paolo P. Lava, Oct 30 2015

Keywords

Comments

Previous name was: "Numbers such that the product of the sum of their divisors and the sum of the reciprocals of their divisors is an integer".
The multiply-perfect numbers (A007691) are a subset of this sequence.
This is a subsequence of A175200. - Michel Marcus, Nov 03 2015
Alternative definition: Numbers m such that Sum_{i = 1..k} (sigma(m) - d_i) / d_i is an integer, where d_i are the k divisors of m. - Paolo P. Lava, Mar 23 2017

Examples

			Divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24. Their sum is sigma(24) = 60 while the sum of their reciprocals is 1/1 + 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/12 + 1/24 = 5/2. Finally 60 * 5/2 = 150.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local n;
    for n from 1 to q do if type(sigma(n)^2/n,integer) then print(n);
    fi; od; end: P(10^6);
  • Mathematica
    Select[Range[36000],Divisible[DivisorSigma[1,#]^2,#]&] (* Harvey P. Dale, Jul 05 2023 *)
  • PARI
    isok(n) = (sigma(n)^2 % n) == 0; \\ Michel Marcus, Nov 03 2015

Extensions

New name from Michel Marcus, Nov 03 2015

A105402 Positive integers k such that the prime factors of sigma(k) are a subset of the prime factors of k.

Original entry on oeis.org

1, 6, 28, 30, 42, 66, 84, 102, 120, 138, 186, 210, 270, 282, 318, 330, 364, 420, 426, 462, 496, 510, 546, 570, 642, 672, 690, 714, 762, 840, 868, 870, 924, 930, 966, 1080, 1092, 1122, 1146, 1302, 1320, 1410, 1428, 1488, 1518, 1590, 1638, 1722, 1770, 1782, 1890
Offset: 1

Views

Author

Walter Kehowski, May 01 2005

Keywords

Comments

Also numbers k such that k^k/sigma(k) is integral. - Vicente Izquierdo Gomez, Jan 04 2013.
Pollack and Pomerance call these numbers "prime-deficient numbers". - Amiram Eldar, Jun 02 2020

Examples

			102 is a term since 102 = 2*3*17 and sigma(102) = 2^3*3^3.
		

Crossrefs

Programs

  • Maple
    A:=select(proc(z) numtheory[factorset](sigma(z)) subset numtheory[factorset](z) end,[$1..100000]); has 716 members.
  • Mathematica
    Select[Range[2000],IntegerQ[#^#/DivisorSigma[1,#]] &] (* Vicente Izquierdo Gomez, Jan 04 2013 *)

Extensions

Extended by R. J. Mathar, Dec 08 2008

A280581 a(n) = the product of divisors of sum of divisors of n.

Original entry on oeis.org

1, 3, 8, 7, 36, 1728, 64, 225, 13, 5832, 1728, 21952, 196, 331776, 331776, 31, 5832, 1521, 8000, 3111696, 32768, 10077696, 331776, 46656000000, 31, 3111696, 2560000, 9834496, 810000, 139314069504, 32768, 250047, 254803968, 8503056, 254803968, 8281, 1444
Offset: 1

Views

Author

Jaroslav Krizek, Jan 05 2017

Keywords

Comments

a(n) < A007955(n) for numbers n in A219364.
a(n) | A007955(n) for numbers n in A219363.
A007955(n) | a(n) for numbers n in A219362.
n | a(n) for numbers n in A175200.

Examples

			For n = 5; a(n) = product of divisors of sigma(5) = 1*2*3*6 = 36.
		

Crossrefs

Programs

  • Magma
    [&*[d: d in Divisors(SumOfDivisors(n))]: n in [1..100]]
    
  • Mathematica
    Table[Times @@ Divisors@ DivisorSigma[1, n], {n, 37}] (* Michael De Vlieger, Jan 06 2017 *)
    a[n_] := (s = DivisorSigma[1, n])^(DivisorSigma[0, s]/2); Array[a, 40] (* Amiram Eldar, Jun 26 2022 *)
  • PARI
    a(n) = my(k = 1); fordiv(sigma(n), d, k*=d); k; \\ Michel Marcus, Jan 06 2017
    
  • Python
    from math import isqrt
    from sympy import divisor_count, divisor_sigma
    def A280581(n): return (lambda m:isqrt(m)**c if (c:=divisor_count(m)) & 1 else m**(c//2))(divisor_sigma(n)) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = A007955(A000203(n)).

A336554 Odd numbers k such that rad(k) divides sigma(k).

Original entry on oeis.org

1, 135, 891, 1521, 3375, 5733, 10935, 11907, 41067, 43875, 84375, 89667, 92781, 98865, 107811, 108927, 154791, 185625, 200655, 216513, 226233, 273375, 274625, 287469, 307125, 336141, 416745, 448335, 480249, 544635, 557375, 570375, 590625, 627669, 628849, 648675, 692055, 823875, 885735, 931095, 968877, 1071875, 1108809, 1131165
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Only a minority of terms seem to be also in A228058: 5733, 92781, 2069613, 3341637, 4179357, 5929605, 60998353, 67637349, 89162541 among the first 216, the five of them which occur also in A263983.
Question: Is the intersection with A336553 empty?

Crossrefs

Odd terms of A175200.
Cf. also A336553.

Programs

  • PARI
    isA336554(n) = if(!(n%2),0,!(sigma(n) % factorback(factorint(n)[, 1])));

A173615 Numbers k such that rad(k)^2 divides sigma(k).

Original entry on oeis.org

1, 96, 864, 1080, 1782, 6144, 7128, 7776, 17280, 27000, 28512, 54432, 55296, 69984, 87480, 114048, 215622, 276480, 381024, 393216, 432000, 433026, 456192, 497664, 629856, 675000, 862488, 1382400, 1399680, 1677312, 1732104, 1824768, 2187000, 2195424, 2667168
Offset: 1

Views

Author

Michel Lagneau, Feb 22 2010

Keywords

Comments

rad(n) is the product of the primes dividing n (A007947) and sigma(n) = sum of divisors of n (A000203). Considering the integers k = (2^a)*(3^b), where a+1 = 6*m and b >= 1, we obtain an infinite number of numbers such that rad(k)^2 divides sigma(k).
De Koninck (2000, 2002) asked whether 1 and 1782 are the only numbers k such that rad(k)^2 = sigma(k). - Amiram Eldar, Jan 29 2025

Examples

			rad(96)^2 = 6^2 = 36, sigma(96) = 252 and 36 divides 252.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B11, p. 102.

Crossrefs

Subsequence of A175200.

Programs

  • Maple
    for n from 1 to 2000000 do : t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if irem(sigma(n),t2^2) = 0 then print (n): else fi: od :
  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p^2 * (p-1)); q[k_] := IntegerQ[Times @@ f @@@ FactorInteger[k]]; q[1] = True; Select[Range[3*10^6], q] (* Amiram Eldar, Jan 29 2025 *)
  • PARI
    isok(n) = my(f=factor(n)); (sigma(f) % factorback(f[, 1])^2) == 0; \\ Michel Marcus, Nov 09 2020

Extensions

a(30)-a(35) from Donovan Johnson, Jan 14 2012

A264154 For numbers m such that rad(n) divides sigma(n), this sequence gives the minimum exponent k such that sigma(m)^k divides m.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 3, 1, 3, 3, 2, 2, 2, 3, 4, 5, 1, 3, 2, 2, 7, 1, 2, 4, 3, 3, 2, 3, 3, 2, 5, 2, 2, 3, 3, 5, 2, 3, 7, 3, 3, 3, 5, 3, 4, 2, 5, 3, 2, 7, 2, 3, 3, 3, 5, 2, 7, 2, 6, 2, 5, 3, 2, 3, 3, 2, 3, 1, 3, 3, 4, 3, 11, 4, 7, 3, 2, 2, 5, 3, 3, 5, 3, 4, 4, 7, 4
Offset: 1

Views

Author

Michel Marcus, Nov 06 2015

Keywords

Examples

			A175200(2) is 6, and for 6, sigma(6)^k/6 is already an integer with k=1, so a(2)=6.
A175200(3) is 24, and for 24, sigma(24)/24 is not an integer while sigma(24)^2/24 is an integer, so a(3)=2.
		

Crossrefs

Cf. A000203 (sigma(n)), A007947 (rad(n)), A175200.

Programs

  • PARI
    fk(s, m) = {j = 1; while(denominator(s^j/m) != 1, j++); j;}
    rad(n) = factorback(factorint(n)[, 1]);
    lista(nn) = {for (n=1, nn, if (denominator(sigma(n)/rad(n)) == 1, k = fk(sigma(n), n); print1(k, ", ");););}

A336387 Number of prime divisors of n that do not divide sigma(n); a(1) = 0.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2020

Keywords

Crossrefs

Cf. A175200 (positions of zeros).
Cf. also A173438, A336352, A336388.

Programs

  • Mathematica
    Table[Length[Select[FactorInteger[n][[All,1]],Mod[DivisorSigma[ 1,n],#]!= 0&]],{n,110}] (* Harvey P. Dale, Jan 15 2022 *)
  • PARI
    A336387(n) = if(1==n,0,my(s=sigma(n)); #select(p -> (s%p), factor(n)[, 1]));

Formula

a(n) = Sum_{p over distinct primes dividing n} [sigma(n) != 0 mod p].
Showing 1-10 of 12 results. Next