A286876 Numbers n such that the set of prime divisors of n is equal to the set of prime divisors of sum of proper divisors of n while n is not in A027598.
24, 40, 216, 234, 360, 588, 2016, 3724, 4320, 4680, 6048, 6552, 9720, 11466, 22932, 54432, 58752, 97920, 99200, 108927, 137214, 167580, 185562, 217854, 297600, 309582, 435708, 448335, 524160, 544635, 637000, 804384, 871416, 931840, 1284192, 1384110, 1489752
Offset: 1
Keywords
Examples
24 is in the sequence because 24 = 2^3*3 and sum of proper divisors of 24 is 1 + 2 + 3 + 4 + 6 + 8 + 12 = 36 = 2^2*3^2 while sigma(24) = 60 is divisible by 5.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
Select[Range[1500000], And[UnsameQ @@ {#1, #2}, SameQ @@ {#1, #3}] & @@ Map[FactorInteger[#][[All, 1]] &, {#1, #2, #2 - #1} & @@ {#, DivisorSigma[1, #]}] &] (* Michael De Vlieger, Aug 02 2017 *)
-
PARI
rad(n) = factorback(factorint(n)[, 1]); isok(n) = rad(sigma(n)-n)==rad(n) && rad(sigma(n))!=rad(n);
Comments