cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A286876 Numbers n such that the set of prime divisors of n is equal to the set of prime divisors of sum of proper divisors of n while n is not in A027598.

Original entry on oeis.org

24, 40, 216, 234, 360, 588, 2016, 3724, 4320, 4680, 6048, 6552, 9720, 11466, 22932, 54432, 58752, 97920, 99200, 108927, 137214, 167580, 185562, 217854, 297600, 309582, 435708, 448335, 524160, 544635, 637000, 804384, 871416, 931840, 1284192, 1384110, 1489752
Offset: 1

Views

Author

Altug Alkan, Aug 02 2017

Keywords

Comments

108927 is the smallest odd term of this sequence.

Examples

			24 is in the sequence because 24 = 2^3*3 and sum of proper divisors of 24 is 1 + 2 + 3 + 4 + 6 + 8 + 12 = 36 = 2^2*3^2 while sigma(24) = 60 is divisible by 5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1500000], And[UnsameQ @@ {#1, #2}, SameQ @@ {#1, #3}] & @@ Map[FactorInteger[#][[All, 1]] &, {#1, #2, #2 - #1} & @@ {#, DivisorSigma[1, #]}] &] (* Michael De Vlieger, Aug 02 2017 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]);
    isok(n) = rad(sigma(n)-n)==rad(n) && rad(sigma(n))!=rad(n);

A055744 Numbers k such that k and phi(k) have the same prime factors.

Original entry on oeis.org

1, 4, 8, 16, 18, 32, 36, 50, 54, 64, 72, 100, 108, 128, 144, 162, 200, 216, 250, 256, 288, 294, 324, 400, 432, 450, 486, 500, 512, 576, 578, 588, 648, 800, 864, 882, 900, 972, 1000, 1014, 1024, 1152, 1156, 1176, 1210, 1250, 1296, 1350, 1458, 1600, 1728, 1764
Offset: 1

Views

Author

Labos Elemer, Jul 11 2000

Keywords

Comments

Contains products of suitable powers of 2 and Fermat primes. For x = 2^u*3^w, phi(x) = 2^u*3^(w-1) with suitable exponents. Analogous constructions are possible with {2,3,7} prime divisors, etc.
From Ivan Neretin, Mar 19 2015: (Start)
Also, numbers k that meet the following criteria for every prime p dividing k:
1. All prime divisors of p-1 must also divide k;
2. If k has no prime divisors of the form m*p+1, and k is divisible by p, then k must be divisible by p^2.
Also, numbers k for which {k, phi(k), phi(phi(k))} is a geometric progression.
(End)
All terms > 1 are even. An even number k is in the sequence iff 2*k is in the sequence. - Robert Israel, Mar 19 2015
For n > 1, the largest prime factor of a(n) has multiplicity >= 2. For all prime factors more than half of the largest prime factor of a(n), the multiplicity differs from 1.
If k = p1^a1 * p2^a2 * ... * pm^am is in the sequence, then so is p1^b1 * p2^b2 * ... * pm^bm for 1 <= i <= m and prime pi and bi >= ai.
If m * p^2 is not in the sequence, for a prime p and some m > 0, then neither is m * p^3. - David A. Corneth, Mar 22 2015
A027748(a(n),j) = A027748(A000010(a(n)),j) for j=1..A001221(a(n)); also numbers k such that k and phi(k) have the same squarefree kernel: A007947(a(n)) = A007947(A000010(a(n))). - Reinhard Zumkeller, Jun 01 2015
Pollack and Pomerance call these numbers "phi-perfect numbers". - Amiram Eldar, Jun 02 2020

Examples

			k = 578 = 2*17*17, phi(578) = 272 = 2*2*2*2*17 with 2 and 17 prime factors, so 578 is a term.
k = 588 = 2*2*3*7*7, phi(588) = 168 = 2*2*2*3*7, so 588 is a term.
k = 264196 = 2*2*257*257, phi(264196) = 512*257 = 131584, so 264196 is a term.
		

Crossrefs

Intersection of A073539 and A151999. - Amiram Eldar, Jun 02 2020
Cf. A007947, A027748, A055742, A173557, A256248, subsequence of A124240.

Programs

  • Haskell
    a055744 n = a055744_list !! (n-1)
    a055744_list = 1 : filter f [2..] where
       f x = all ((== 0) . mod x) (concatMap (a027748_row . subtract 1) ps) &&
             all ((== 0) . mod (a173557 x))
                 (map fst $ filter ((== 1) . snd) $ zip ps $ a124010_row x)
             where ps = a027748_row x
    -- Reinhard Zumkeller, Jun 01 2015
  • Maple
    select(numtheory:-factorset = numtheory:-factorset @ numtheory:-phi,
    [1, 2*i $ i=1..2000]); # Robert Israel, Mar 19 2015
    isA055744 := proc(n)
        nfs := numtheory[factorset](n) ;
        phinfs := numtheory[factorset](numtheory[phi](n)) ;
        if nfs = phinfs then
            true;
        else
            false;
        end if;
    end proc:
    A055744 := proc(n)
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA055744(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    Select[Range@ 1800,
    First /@ FactorInteger@ # == First /@ FactorInteger@ EulerPhi@ # &] (* Michael De Vlieger, Mar 21 2015 *)
  • PARI
    is(n)=factor(n)[,1]==factor(eulerphi(n))[,1] \\ Charles R Greathouse IV, Oct 31 2011
    
  • PARI
    is(n)=my(f=factor(n)); f[,1]==factor(eulerphi(f))[,1] \\ Charles R Greathouse IV, May 26 2015
    

Extensions

Corrected and extended by James Sellers, Jul 11 2000

A175200 Numbers k such that rad(k) divides sigma(k).

Original entry on oeis.org

1, 6, 24, 28, 40, 54, 96, 120, 135, 216, 224, 234, 270, 360, 384, 486, 496, 540, 588, 600, 640, 672, 864, 891, 936, 1000, 1080, 1350, 1372, 1521, 1536, 1638, 1782, 1792, 1920, 1944, 2016, 2160, 2176, 3000, 3240, 3375, 3402, 3456, 3564, 3724, 3744, 3780, 4320
Offset: 1

Views

Author

Michel Lagneau, Mar 03 2010

Keywords

Comments

rad(k) is the product of the distinct primes dividing k (A007947). sigma(k) is the sum of divisors of k (A000203). The odd numbers in this sequence (A336554) are rare: 1, 135, 891, 1521, 3375, 5733, 10935, 11907, 41067, 43875, ...
Also numbers k such that k divides sigma(k)^tau(k). - Arkadiusz Wesolowski, Nov 09 2013
This sequence is infinite. It contains an infinite number of even elements and an infinite number of odd ones. This is due to the fact that for every odd prime p and every prime q dividing p+1, p*q^r is prime-perfect when r = -1 + the multiplicative order of q modulo p. - Emmanuel Vantieghem, Oct 13 2014
For each term, it is possible to find an exponent k such that sigma(n)^k is divisible by n. A007691 (multi-perfect numbers) is a subsequence of terms that have k=1. A263928 is the subsequence of terms that have k=2. - Michel Marcus, Nov 03 2015
Pollack and Pomerance call these numbers "prime-abundant numbers". - Amiram Eldar, Jun 02 2020

Examples

			rad(6) = 6, sigma(6) = 12 = 6*2.
rad(24) = 6, sigma(24) = 60 = 6*10.
rad(43875) = 195, sigma(43875) = 87360 = 195*448.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 827.

Crossrefs

Programs

  • Magma
    [n: n in [1..5000] | IsZero(DivisorSigma(1, n)^n mod n)];// Vincenzo Librandi, Aug 07 2018
  • Maple
    for n from 1 to 5000 do : p1:= ifactors(n)[2] :p2 :=mul(p1[i][1], i=1..nops(p1)): if irem(sigma(n),p2) =0 then print (n): else fi: od :
  • Mathematica
    Select[Range@5000, Divisible[DivisorSigma[1, #]^#, # ]&] (* Vincenzo Librandi, Aug 07 2018 *)
  • PARI
    isok(n) = {fs = Set(factor(sigma(n))[,1]); fn = Set(factor(n)[,1]); fn == setintersect(fn, fs);} \\ Michel Marcus, Nov 03 2015
    

A081377 Numbers n such that the set of prime divisors of phi(n) is equal to the set of prime divisors of sigma(n).

Original entry on oeis.org

1, 3, 14, 35, 42, 70, 105, 119, 209, 210, 238, 248, 297, 357, 418, 477, 594, 595, 616, 627, 714, 744, 954, 1045, 1178, 1190, 1240, 1254, 1463, 1485, 1672, 1674, 1736, 1785, 1848, 1863, 2079, 2090, 2376, 2385, 2540, 2728, 2926, 2945, 2970, 3080, 3135, 3302
Offset: 1

Views

Author

Labos Elemer, Mar 26 2003

Keywords

Comments

The multiplicities of the divisors are to be ignored.
Is it true that 1 is the only term in both this sequence and A055744? - Farideh Firoozbakht, Jul 01 2008. Answer from Luke Pebody, Jul 10 2008: No! In fact the numbers 103654150315463023813006470 and 6534150553412193640795377701190 are in both sequences.

Examples

			n=418=2*11*19: sigma(418)=720, phi[418]=180, common prime factor set ={2,3,5}
k = 477 = 3*3*53: sigma(477) = 702 = 2*3*3*3*13; phi(477) = 312 = 2*2*2*3*13; common factor set: {2,3,13}.
phi(89999)=66528=2^5*3^3*7*11 and sigma(89999)=118272=2^9*3*7*11 so 89999 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] Do[s=ba[DivisorSigma[1, n]]; s1=ba[EulerPhi[n]]; If[Equal[s, s1], k=k+1; Print[n]], {n, 1, 10000}]
  • PARI
    is(n)=factor(eulerphi(n=factor(n)))[,1]==factor(sigma(n))[,1] \\ Charles R Greathouse IV, Nov 27 2013

Extensions

Edited by N. J. A. Sloane, Jul 11 2008 at the suggestion of Farideh Firoozbakht

A105402 Positive integers k such that the prime factors of sigma(k) are a subset of the prime factors of k.

Original entry on oeis.org

1, 6, 28, 30, 42, 66, 84, 102, 120, 138, 186, 210, 270, 282, 318, 330, 364, 420, 426, 462, 496, 510, 546, 570, 642, 672, 690, 714, 762, 840, 868, 870, 924, 930, 966, 1080, 1092, 1122, 1146, 1302, 1320, 1410, 1428, 1488, 1518, 1590, 1638, 1722, 1770, 1782, 1890
Offset: 1

Views

Author

Walter Kehowski, May 01 2005

Keywords

Comments

Also numbers k such that k^k/sigma(k) is integral. - Vicente Izquierdo Gomez, Jan 04 2013.
Pollack and Pomerance call these numbers "prime-deficient numbers". - Amiram Eldar, Jun 02 2020

Examples

			102 is a term since 102 = 2*3*17 and sigma(102) = 2^3*3^3.
		

Crossrefs

Programs

  • Maple
    A:=select(proc(z) numtheory[factorset](sigma(z)) subset numtheory[factorset](z) end,[$1..100000]); has 716 members.
  • Mathematica
    Select[Range[2000],IntegerQ[#^#/DivisorSigma[1,#]] &] (* Vicente Izquierdo Gomez, Jan 04 2013 *)

Extensions

Extended by R. J. Mathar, Dec 08 2008

A081381 Numbers n such that n and tau(n) = A000005(n) have the same prime factors (ignoring multiplicity).

Original entry on oeis.org

1, 2, 8, 9, 12, 18, 72, 80, 96, 108, 128, 288, 448, 486, 625, 720, 768, 864, 972, 1152, 1200, 1250, 1620, 1944, 2000, 2025, 2560, 4032, 4050, 5000, 5625, 6144, 6561, 6912, 7500, 7776, 8748, 9408, 10800, 11250, 11264, 12960, 13122, 16200, 18000, 18432, 19440
Offset: 1

Views

Author

Labos Elemer, Mar 26 2003

Keywords

Examples

			n = 5000 = 2*2*2*5*5*5*5, tau(5000) = 20 = 2*2*5, common prime factors: {2,5}
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] Do[s=ba[DivisorSigma[0, n]]; If[Equal[s, ba[n]], Print[n]], {n, 1, 10000}]
  • PARI
    is(n)=my(f=factor(n)); factor(numdiv(f))[,1]==f[,1] \\ Charles R Greathouse IV, Oct 19 2017

A295078 Numbers n > 1 such that n and sigma(n) have the same smallest and simultaneously largest prime factors.

Original entry on oeis.org

6, 28, 40, 84, 120, 140, 224, 234, 270, 420, 468, 496, 672, 756, 936, 1080, 1120, 1170, 1372, 1488, 1550, 1638, 1782, 1862, 2176, 2340, 2480, 2574, 3100, 3250, 3276, 3360, 3472, 3564, 3724, 3744, 3780, 4116, 4464, 4598, 4650, 4680, 5148, 5456, 5586, 6048, 6200
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2017

Keywords

Comments

All even perfect numbers are terms.
Conjecture: A007691 (multiply-perfect numbers) is a subsequence.
Note that an odd perfect number (if it exists) would be a counterexample to the conjecture. - Robert Israel, Jan 08 2018
Intersection of A071834 and A295076.
Numbers n such that A020639(n) = A020639(sigma(n)) and simultaneously A006530(n) = A006530(sigma(n)).
Numbers n such that A020639(n) = A071189(n) and simultaneously A006530(n) = A071190(n).
Supersequence of A027598.

Examples

			40 = 2^3*5 and sigma(40) = 90 = 2*3^2*5 hence 40 is in the sequence.
The first odd term is 29713401 = 3^2 * 23^2 * 79^2; sigma(29713401) = 45441669 = 3*7^3*13*43*79.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..10000] | Minimum(PrimeDivisors(n)) eq Minimum(PrimeDivisors(SumOfDivisors(n))) and Maximum(PrimeDivisors(n)) eq Maximum(PrimeDivisors(SumOfDivisors(n)))]
    
  • Maple
    filter:= proc(n) local f, s; uses numtheory;
      f:= factorset(n);
      s:= factorset(sigma(n));
      min(f) = min(s) and max(f)=max(s)
    end proc:
    select(filter, [$2..10^4]); # Robert Israel, Jan 08 2018
  • Mathematica
    Rest@ Select[Range@ 6200, SameQ @@ Map[{First@ #, Last@ #} &@ FactorInteger[#][[All, 1]] &, {#, DivisorSigma[1, #]}] &] (* Michael De Vlieger, Nov 13 2017 *)
  • PARI
    isok(n) = if (n > 1, my(fn = factor(n)[,1], fs = factor(sigma(n))[,1]); (vecmin(fn) == vecmin(fs)) && (vecmax(fn) == vecmax(fs))); \\ Michel Marcus, Jan 08 2018

Extensions

Added condition n>1 to definition. Corrected b-file. - N. J. A. Sloane, Feb 03 2018

A329858 Numbers k such that k and usigma(k) have the same set of prime divisors, where usigma(k) is the sum of unitary divisors of k (A034448).

Original entry on oeis.org

1, 6, 24, 60, 90, 180, 360, 378, 816, 1056, 1512, 3780, 9100, 10500, 12240, 13230, 15750, 15840, 26460, 31500, 36750, 40950, 46494, 51408, 52920, 63000, 63700, 66528, 73500, 87360, 94500, 95550, 110250, 145600, 145920, 147000, 163800, 181632, 185976, 220500
Offset: 1

Views

Author

Amiram Eldar, Nov 22 2019

Keywords

Examples

			6 is in the sequence since 6 = 2 * 3 and usigma(6) = 12 = 2^2 * 3 both have the same set of prime divisors, {2, 3}.
		

Crossrefs

The unitary version of A027598.

Programs

  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); usigma[1]=1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); Select[Range[2*10^5], rad[#] == rad[usigma[#]] &]

A329879 Numbers k such that k and nusigma(k) have the same set of prime divisors, where nusigma(k) is the sum of nonunitary divisors of k (A048146).

Original entry on oeis.org

4, 9, 24, 25, 49, 54, 112, 121, 150, 169, 289, 294, 361, 480, 529, 726, 750, 841, 961, 1014, 1369, 1681, 1734, 1849, 1984, 2058, 2166, 2209, 2430, 2520, 2688, 2809, 3174, 3481, 3721, 3780, 4489, 5041, 5046, 5329, 5760, 5766, 6241, 6889, 7921, 7986, 8214, 8700
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2019

Keywords

Comments

Numbers k such that rad(nusigma(k)) = rad(k), where rad(k) is the squarefree kernel of k (A007947).

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger@ n); usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; Select[Range[10^4], rad[nusigma[#]] == rad[#] &]

A214266 Numbers n such that n, phi(n) and sigma(n) have same set of prime factors.

Original entry on oeis.org

1, 103654150315463023813006470, 207308300630926047626012940, 414616601261852095252025880, 518270751577315119065032350, 829233202523704190504051760, 982794906694760522078876160, 1036541503154630238130064700
Offset: 1

Views

Author

Michel Marcus, Jul 09 2012

Keywords

Examples

			For n = 207308300630926047626012940 = 2^2*3^4*5*7*11*13^3*17^3*29^2*31^3*37^2*67^2
phi(n) = 2^18*3^9*5^2*7*11*13^2*17^2*29*31^2*37*67 and
sigma(n) = 2^16*3^6*5^2*7^5*11^2*13^2*17*29*31*37*67^2
have the same prime factors.
		

Crossrefs

Showing 1-10 of 14 results. Next