A175252 Numbers whose digit representation is equal to the digit representation of the initial terms of their sets of divisors in increasing order.
1, 12, 124, 135, 1525, 13515, 124816, 12356910, 1243162124, 1525125625, 12478141928, 12510254150, 1234689111216, 1351553159265, 1597717414885, 12356910151830, 13791121336377, 123561015253050, 124510202550100, 135152575125375, 1236103206309618, 123456101215203060, 123569101518304590
Offset: 1
Examples
a(1) = 1: d(1) = {1}. a(2) = 12: d(12) = {1, 2, 3, 4, 6, 12}. a(3) = 124: d(124) = {1, 2, 4, 31, 62, 124}. a(4) = 135: d(135) = {1, 3, 5, 9, 15, 27, 45, 135}.
Links
- Tim Peters, Table of n, a(n) for n = 1..25
- David A. Corneth and Michel Marcus, Some terms found in search for terms for A357692
- David A. Corneth and Michel Marcus, Some terms <= 10^500
Programs
-
PARI
isok(k) = my(s=""); fordiv(k, d, s=concat(s, Str(d)); if (eval(s)==k, return(1)); if (eval(s)> k, return(0))); \\ Michel Marcus, Sep 22 2022
-
PARI
is(n, {u = 10^5}) = { my(oldu = u, s, d, fe); s = ""; u = min(u, n); fe = factor(n, u); d = divisors(fe); if(#fe~ > 0 && fe[#fe~, 1] > u, d = select(x -> x < fe[#fe~, 1], d); ); for(i = 1, #d, if(d[i] > u, return(is(n, 10*oldu)); ); s=concat(s, Str(d[i])); if(eval(s) == n, return(1)); if(eval(s) > n, return(0)); ); is(n, 10*oldu); } \\ David A. Corneth, Oct 12 2022, Nov 07 2022
-
Python
from sympy import divisors def ok(n): target, s = str(n), "" if target[0] != "1": return False for d in divisors(n): s += str(d) if len(s) >= len(target): return s == target elif not target.startswith(s): return False print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Sep 22 2022
Extensions
a(9)-a(10) from Michel Marcus, Sep 22 2022
a(11)-a(12) from Michel Marcus, Oct 02 2022
a(13)-a(15) from Tim Peters, Oct 17 2022
a(16)-a(17) from Giovanni Resta, Oct 20 2022
a(18)-a(20) from Tim Peters, Oct 27 2022
a(21) from Tim Peters, Oct 30 2022
a(22)-a(23) from Tim Peters, Nov 04 2022
Comments