A175441 Denominator of the harmonic mean of the first n positive integers.
1, 3, 11, 25, 137, 49, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 14274301, 275295799, 11167027, 18858053, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003, 315404588903, 9227046511387, 9304682830147
Offset: 1
Examples
H(n) = 1, 4/3, 18/11, 48/25, 300/137, 120/49, 980/363, 2240/761, ... Comparison with A001008: the first 19 entries coincide because 20 is the first entry of A256102; indeed, A001008(20) = 55835135 and a(2) = 11167027. The quotient is 5 = A256103(1). - _Wolfdieter Lang_, Apr 23 2015
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
Table[Denominator[HarmonicMean[Range[n]]],{n,30}] (* Harvey P. Dale, May 21 2021 *)
-
PARI
a(n)={denominator(n/sum(k=1, n, 1/k))} \\ Andrew Howroyd, Jan 08 2020
Formula
a(n) = denominator(n/(Sum_{k=1..n} 1/k)). - Andrew Howroyd, Jan 08 2020
a(n) = numerator(Sum_{k>0} 1/(k*(k+n))). - Mohammed Yaseen, Jun 23 2024
Extensions
Terms a(25) and beyond from Andrew Howroyd, Jan 08 2020
Comments