cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175441 Denominator of the harmonic mean of the first n positive integers.

Original entry on oeis.org

1, 3, 11, 25, 137, 49, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 14274301, 275295799, 11167027, 18858053, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003, 315404588903, 9227046511387, 9304682830147
Offset: 1

Views

Author

Jaroslav Krizek, May 16 2010

Keywords

Comments

See A102928 - numerators of the harmonic means of the first n positive integers.
a(n) = A001008(n) for n = 1 - 19 and other n.
a(n) is also the numerator of H(n)/(n+1)+1/(n+1)^2 = -int(x^n*log(1-x), x=0..1) with H(n) = A001008(x)/A002805(n) harmonic number of order n. - Groux Roland, Jan 08 2011
a(n) coincides with A001008(n) iff n is not in the sequence A256102. For the quotient A001008(n) / a(n) if n is from A256102 see the corresponding entry of A256103. - Wolfdieter Lang, Apr 23 2015

Examples

			H(n) = 1, 4/3, 18/11, 48/25, 300/137, 120/49, 980/363, 2240/761, ...
Comparison with A001008: the first 19 entries coincide because 20 is the first entry of A256102; indeed, A001008(20) = 55835135 and a(2) = 11167027. The quotient is 5 = A256103(1). - _Wolfdieter Lang_, Apr 23 2015
		

Crossrefs

Cf. A102928 (numerators), A001008, A256102, A256103.

Programs

  • Mathematica
    Table[Denominator[HarmonicMean[Range[n]]],{n,30}] (* Harvey P. Dale, May 21 2021 *)
  • PARI
    a(n)={denominator(n/sum(k=1, n, 1/k))} \\ Andrew Howroyd, Jan 08 2020

Formula

a(n) = denominator(n/(Sum_{k=1..n} 1/k)). - Andrew Howroyd, Jan 08 2020
a(n) = numerator(Sum_{k>0} 1/(k*(k+n))). - Mohammed Yaseen, Jun 23 2024

Extensions

Terms a(25) and beyond from Andrew Howroyd, Jan 08 2020