cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175522 A000120-perfect numbers.

Original entry on oeis.org

2, 25, 95, 111, 119, 123, 125, 169, 187, 219, 221, 247, 289, 335, 365, 411, 415, 445, 485, 493, 505, 629, 655, 685, 695, 697, 731, 767, 815, 841, 871, 943, 949, 965, 985, 1003, 1139, 1207, 1241, 1261, 1263, 1273, 1343, 1387, 1465, 1469, 1507, 1513, 1529, 1563
Offset: 1

Views

Author

Vladimir Shevelev, Dec 03 2010

Keywords

Comments

Let A(n), n>=1, be an infinite positive sequence.
We call a number n:
A-deficient if Sum{d|n, d
A-abundant if Sum{d|n, d A(n),
and
A-perfect if Sum{d|n, d
depending on the sum over the proper divisors of n.
The definition generalizes the standard nomenclature of deficient (A005100), abundant (A005101) and perfect numbers (A000396), which is recovered by setting A(n) = n = A000027(n).
Conjecture: if there exist infinitely many A-deficient numbers and infinitely many A-abundant numbers, then there exist infinitely many A-perfect numbers.
Note that the sequence contains squares of all Fermat primes larger than 3 (see A019434). [This would also hold for squares of any hypothetical Fermat primes after the fifth one, 65537. Comment clarified by Antti Karttunen, May 14 2015]
A192895(a(n)) = 0. - Reinhard Zumkeller, Jul 12 2011

Examples

			Proper divisors of 119 are 1,7,17. Since A000120(1)+A000120(7)+A000120(17)=A000120(119), then 119 is in the sequence.
		

Crossrefs

Cf. A175524 (deficient version), A175526 (abundant version), A000120, A000396.
Subsequence of A257691 (non-abundant version).
Positions of zeros in A192895.

Programs

  • Haskell
    import Data.List (elemIndices)
    a175522 n = a175522_list !! (n-1)
    a175522_list = map (+ 1) $ elemIndices 0 a192895_list
    -- Reinhard Zumkeller, Jul 12 2011
    
  • Mathematica
    binw[n_] := DigitCount[n, 2, 1]; Select[Range[1500], binw[#] == DivisorSum[#, binw[#1] &]/2 &] (* Amiram Eldar, Dec 14 2020 *)
  • PARI
    is(n)=sumdiv(n,d,hammingweight(d))==2*hammingweight(n) \\ Charles R Greathouse IV, Jan 28 2016
    
  • Python
    from sympy import divisors
    def A000120(n): return bin(n).count('1')
    def aupto(limit):
      alst = []
      for m in range(1, limit+1):
        if A000120(m) == sum(A000120(d) for d in divisors(m)[:-1]): alst += [m]
      return alst
    print(aupto(1563)) # Michael S. Branicky, Feb 25 2021
  • Sage
    A000120 = lambda x: x.digits(base=2).count(1)
    is_A175522 = lambda x: sum(A000120(d) for d in divisors(x)) == 2*A000120(x)
    A175522 = filter(is_A175522, IntegerRange(1, 10**4))
    # D. S. McNeil, Dec 04 2010
    

Extensions

More terms from Amiram Eldar, Feb 18 2019