cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A175648 Semiprimes m such that m+4 is also semiprime.

Original entry on oeis.org

6, 10, 21, 22, 34, 35, 51, 58, 65, 82, 87, 91, 111, 115, 118, 119, 129, 141, 142, 155, 183, 201, 202, 205, 209, 213, 214, 215, 217, 249, 274, 287, 291, 295, 298, 299, 301, 305, 319, 323, 335, 358, 361, 377, 382, 391, 394, 403, 407, 411, 413, 447, 454, 469, 478
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 02 2010

Keywords

Crossrefs

Programs

  • Maple
    select(t -> numtheory:-bigomega(t)=2 and numtheory:-bigomega(t+4)=2, [$1..1000]); # Robert Israel, Feb 12 2015
  • Mathematica
    Select[Range@ 480, And[PrimeOmega@ # == 2, PrimeOmega[# + 4] == 2] &] (* Michael De Vlieger, Dec 09 2015 *)
  • PARI
    isok(n) = (bigomega(n) == 2) && (bigomega(n+4) == 2); \\ Michel Marcus, Feb 12 2015

Extensions

Corrected (309 removed) by R. J. Mathar, Aug 03 2010
Definition corrected by Zak Seidov, Feb 12 2015

A175634 Chen semiprimes: semiprimes m such that m+4 is either a prime or a semiprime.

Original entry on oeis.org

6, 9, 10, 15, 21, 22, 25, 33, 34, 35, 39, 49, 51, 55, 57, 58, 65, 69, 82, 85, 87, 91, 93, 111, 115, 118, 119, 123, 129, 133, 141, 142, 145, 155, 159, 169, 177, 183, 187, 201, 202, 205, 209, 213, 214, 215, 217, 219, 235, 237, 247, 249, 253, 259, 265, 267, 274, 287
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 01 2010

Keywords

Crossrefs

Programs

  • Python
    from sympy.ntheory.factor_ import primeomega, isprime
    def issemiprime(n): return primeomega(n) == 2
    def ok(n): return issemiprime(n) and (issemiprime(n+4) or isprime(n+4))
    print(list(filter(ok, range(1, 288)))) # Michael S. Branicky, Apr 14 2021

Extensions

Corrected (86 replaced by 85) by R. J. Mathar, Aug 03 2010

A175663 Maximal run length of primes of the form n, n+2, n+2*3, n+2*3*5,..

Original entry on oeis.org

0, 1, 2, 0, 3, 0, 1, 0, 0, 0, 4, 0, 1, 0, 0, 0, 5, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 9, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 6, 0, 1, 0, 0
Offset: 1

Views

Author

Vladislav-Stepan Malakovsky & Juri-Stepan Gerasimov, Aug 04 2010

Keywords

Examples

			a(107)=8 because 107=prime, 107+2=109=prime, 107+2*3=113=prime, 107+2*3*5=137=prime, 107+2*3*5*7=317=prime, 107+2*3*5*7*11=2417=prime, 107+2*3*5*7*11*13=30137=prime, 107+2*3*5*7*11*13*17=510617=prime.
		

Crossrefs

Cf. A006512 (greater of twin primes), A175612 (list of twin semiprimes), A175648 (lesser of twin semiprimes).
Cf. also A175682.

Programs

  • Maple
    A002110 := proc(n) option remember; mul(ithprime(i),i=1..n) ; end proc:
    A175663 := proc(n) if isprime(n) then for p from 1 do if not isprime(n+A002110(p)) then return p ; end if; end do: else return 0 ; end if; end proc:
    seq(A175663(n),n=1..120) ; # R. J. Mathar, Aug 07 2010
  • Mathematica
    Array[If[PrimeQ@ #, Block[{s = {1}}, While[PrimeQ[# + Times @@ Prime@ s], AppendTo[s, s[[-1]] + 1]]; Last@ s], 0] &, 105] (* Michael De Vlieger, Jan 03 2019 *)
  • PARI
    A175663(n) = if(!isprime(n),0,my(pr=2); for(k=1, oo, if(!isprime(pr+n), return(k)); pr *= prime(1+k))); \\ Antti Karttunen, Jan 03 2019

Formula

a(n) <= A175682(n). - Antti Karttunen, Jan 03 2019

A175664 Greater of twin semiprimes.

Original entry on oeis.org

10, 14, 25, 26, 38, 39, 55, 62, 69, 86, 91, 95, 115, 119, 122, 123, 133, 145, 146, 159, 187, 205, 206, 209, 213, 217, 218, 219, 221, 253, 278, 291, 295, 299, 302, 303, 305, 309, 323, 327, 339, 362, 365, 381, 386, 395, 398, 407, 411, 415, 417, 451, 458, 473
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 04 2010

Keywords

Comments

Semiprimes m such that m-4 is also semiprime.

Examples

			a(1)=10 because 10 (semiprime) - 4 = 6 (semiprime);
a(2)=14 because 14 (semiprime) - 4 = 10 (semiprime).
		

Crossrefs

Cf. A006512 (greater of twin primes), A175612 (list of twin semiprimes), A175648 (lesser of twin semiprimes).

Programs

  • Maple
    A175664 := proc(n) option remember; if n = 1 then 10; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 and numtheory[bigomega](a-4) = 2 then return a; end if; end do: end if; end proc: seq(A175664(n),n=1..100) ; # R. J. Mathar, Aug 07 2010
  • Mathematica
    SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,500}],{1,,,_,1}][[All,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 16 2017 *)

Formula

a(n) = 4 + A175648(n). - R. J. Mathar, Aug 07 2010

Extensions

Corrected (313 removed) by R. J. Mathar, Aug 07 2010

A175668 First differences of A175648.

Original entry on oeis.org

4, 11, 1, 12, 1, 16, 7, 7, 17, 5, 4, 20, 4, 3, 1, 10, 12, 1, 13, 28, 18, 1, 3, 4, 4, 1, 1, 2, 32, 25, 13, 4, 4, 3, 1, 2, 4, 14, 4, 12, 23, 3, 16, 5, 9, 3, 9, 4, 4, 2, 34, 7, 15, 9, 3, 4, 4, 4, 4, 4, 10, 4, 14, 4, 5, 24, 17, 43, 7, 38, 14, 4, 9, 1, 4, 4, 10, 4, 28, 4, 14, 4, 14, 4, 4, 10, 4, 10
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 05 2010

Keywords

Comments

Distance between twin semiprime pairs.

Crossrefs

Programs

  • Maple
    A175648 := proc(n) option remember; if n = 1 then 6; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 and numtheory[bigomega](a+4) = 2 then return a; end if; end do: end if; end proc:
    A175668 := proc(n) A175648(n+1)-A175648(n) ; end proc:
    seq(A175668(n),n=1..100) ; # R. J. Mathar, Aug 07 2010

Extensions

Terms from a(33) on corrected by R. J. Mathar, Aug 07 2010

A175710 Numbers k such that k-4, k and k+4 are all semiprimes.

Original entry on oeis.org

10, 91, 115, 119, 205, 209, 213, 217, 291, 295, 299, 305, 323, 407, 411, 485, 489, 493, 497, 501, 515, 533, 685, 699, 703, 717, 749, 767, 785, 789, 803, 917, 955, 989, 1007, 1077, 1115, 1137, 1141, 1145, 1195, 1199, 1203, 1207, 1257, 1267, 1333, 1343, 1347
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 12 2010

Keywords

Comments

If k is a term, one of k-4, k and k+4 is 3 times a prime. - Robert Israel, Mar 25 2025

Examples

			a(1)=10 because 10-4=6, 10 and 10+4=14 are all semiprimes.
		

Crossrefs

Programs

  • Maple
    SP:= select(t -> numtheory:-bigomega(t) = 2, {$1..10000}):
    sort(convert(SP intersect (SP +~ 4) intersect (SP -~ 4),list)); # Robert Israel, Mar 25 2025

Extensions

Corrected (299, 411 etc inserted) by R. J. Mathar, Aug 13 2010
Name edited by Robert Israel, Mar 25 2025

A175765 Pairs (t,t+8) of 3-almost primes t separated by 8.

Original entry on oeis.org

12, 20, 20, 28, 42, 50, 44, 52, 68, 76, 70, 78, 102, 110, 116, 124, 117, 125, 130, 138, 164, 172, 174, 182, 182, 190, 222, 230, 230, 238, 236, 244, 238, 246, 258, 266, 282, 290, 284, 292, 310, 318, 325, 333, 366, 374, 402, 410, 404, 412, 410, 418, 418, 426, 426, 434
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 30 2010

Keywords

Comments

Pairs (12,20), (20,28), (42,50) etc, sorted by the smaller member, such that both numbers are members of A014612 and their difference is 8.

Crossrefs

Extensions

Corrected (236 replaced by 238, 258, 266 inserted etc.) by R. J. Mathar, Sep 01 2010

A175766 Greater of "twin numbers": Omega(n) = Omega(n - 2^Omega(n)), where Omega is A001222.

Original entry on oeis.org

5, 7, 10, 13, 14, 19, 20, 25, 26, 28, 31, 38, 39, 40, 43, 50, 52, 55, 56, 61, 62, 69, 73, 76, 78, 80, 86, 91, 95, 100, 103, 104, 109, 110, 112, 115, 119, 122, 123, 124, 125, 133, 138, 139, 145, 146, 151, 152, 156, 159, 160, 172, 181, 182, 187, 190, 193, 199, 200, 205, 206, 208
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 01 2010

Keywords

Comments

Generalizes the twin primes. Superset of A006512.

Examples

			"Twin numbers" are (3, 5), (5, 7), (6, 10), (11, 13), (10, 14), (17, 19), (12, 20), (21, 25), (22, 26), (20, 28), (29, 31), (34, 38), (35, 39), (24, 40), (41, 43), (42, 50), (44, 52), (51, 55), (40, 56), (59, 61), (58, 62), (65, 69), (71, 73), ...
		

Crossrefs

Programs

  • PARI
    for(n=1,1e3,o=bigomega(n);trap(, ,if(o==bigomega(n-2^o),print1(n","))))

Extensions

Entry rewritten by Charles R Greathouse IV, Sep 01 2010

A175636 Maximal (nonzeros) run length of semiprimes of the form k+4, k+8, k+12,.., where k is a non-semiprime.

Original entry on oeis.org

1, 3, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 3, 1, 1, 1, 4, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 6, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 5, 1, 2, 3, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 4, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 7, 1, 3, 1, 1, 1, 1, 3, 1, 2, 1, 1
Offset: 1

Views

Author

Vladislav-Stepan Malakovsky & Juri-Stepan Gerasimov, Aug 01 2010

Keywords

Examples

			a(1)=1 because k=0=non-semiprime and 0+4=4=semiprime; a(2)=3 because k=2=non-semiprime and 2+4=6=semiprime, 2+8=10=semiprime, 2+12=14=semiprime; a(3)=1 because k=5=non-semiprime and 5+4=9=semiprime.
		

Crossrefs

A175767 List of pairs of "twin numbers": Omega(n) = Omega(n - 2^Omega(n)), where Omega is A001222.

Original entry on oeis.org

3, 5, 5, 7, 6, 10, 11, 13, 10, 14, 17, 19, 12, 20, 21, 25, 22, 26, 20, 28, 29, 31, 34, 38, 35, 39, 24, 40, 41, 43, 42, 50, 44, 52, 51, 55, 40, 56, 59, 61, 58, 62, 65, 69, 71, 73, 68, 76, 70, 78, 48, 80, 82, 86, 87, 91, 91, 95, 84, 100, 101, 103, 88, 104, 107, 109, 102, 110, 80, 112, 111
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 01 2010

Keywords

Comments

The k-primes = numbers that are divisible by exactly k primes (counted with multiplicity).

Examples

			"Twin numbers" are (3, 5), (5, 7), (6, 10), (11, 13), (10, 14), (17, 19), (12, 20), (21, 25), (22, 26), (20, 28), (29, 31), (34, 38), (35, 39), (24, 40), (41, 43), (42, 50), (44, 52), (51, 55), (40, 56), (59, 61), (58, 62), (65, 69), (71, 73), ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{#[[3]],#[[1]]}&/@Select[Table[{n,PrimeOmega[n],n-2^PrimeOmega[n],PrimeOmega[ n-2^PrimeOmega[n]]},{n,150}],#[[2]]==#[[4]]&]] (* Harvey P. Dale, Mar 23 2024 *)

Formula

a(2n+1) = A175766(n) = a(2n) + 2^A001222(a(2n+1)).

Extensions

Rewritten by Charles R Greathouse IV, Sep 03 2010
Showing 1-10 of 10 results.