cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A175668 First differences of A175648.

Original entry on oeis.org

4, 11, 1, 12, 1, 16, 7, 7, 17, 5, 4, 20, 4, 3, 1, 10, 12, 1, 13, 28, 18, 1, 3, 4, 4, 1, 1, 2, 32, 25, 13, 4, 4, 3, 1, 2, 4, 14, 4, 12, 23, 3, 16, 5, 9, 3, 9, 4, 4, 2, 34, 7, 15, 9, 3, 4, 4, 4, 4, 4, 10, 4, 14, 4, 5, 24, 17, 43, 7, 38, 14, 4, 9, 1, 4, 4, 10, 4, 28, 4, 14, 4, 14, 4, 4, 10, 4, 10
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 05 2010

Keywords

Comments

Distance between twin semiprime pairs.

Crossrefs

Programs

  • Maple
    A175648 := proc(n) option remember; if n = 1 then 6; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 and numtheory[bigomega](a+4) = 2 then return a; end if; end do: end if; end proc:
    A175668 := proc(n) A175648(n+1)-A175648(n) ; end proc:
    seq(A175668(n),n=1..100) ; # R. J. Mathar, Aug 07 2010

Extensions

Terms from a(33) on corrected by R. J. Mathar, Aug 07 2010

A352137 a(n) is the first start of a sequence of exactly n members of A175648 under the map k -> 3*k+4.

Original entry on oeis.org

21, 6, 155, 1111, 77635, 25877, 16392913, 78494323
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 05 2022

Keywords

Comments

a(n), 3*a(n)+4, 3*(3*a(n)+4)+4, ..., 3^(n-1)*a(n)+2*3^(n-1)-2 are in A175648 but 3^n*a(n)+2*3^n-2 is not.

Examples

			a(3) = 155 because 155, 3*155+4 = 469 and 3*469+4 = 1411 are in A175648 but 3*1411+4 = 4237 is not (155 = 5*31, 159 = 3*53, 469 = 7*67, 473 - 11*43, 1411 = 17*83, and 1415 = 5*283 are semiprimes, but 4241 is prime).
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember;
       if numtheory:-bigomega(n)=2 and numtheory:-bigomega(n+4)=2 then 1 + procname(3*n+4) else 0 fi
    end proc:
    V:= Vector(7): count:= 0:
    for nn from 1 while count < 7 do
       v:= f(nn);
       if v > 0 and V[v] = 0 then count:= count+1; V[v]:= nn; fi
    od:
    convert(V,list);

A242804 Integers k such that each of k, k+1, k+2, k+4, k+5, k+6 is the product of two distinct primes.

Original entry on oeis.org

213, 143097, 194757, 206133, 273417, 684897, 807657, 1373937, 1391757, 1516533, 1591593, 1610997, 1774797, 1882977, 1891761, 2046453, 2051493, 2163417, 2163957, 2338053, 2359977, 2522517, 2913837, 3108201, 4221753
Offset: 1

Views

Author

Keywords

Comments

A remarkable gap occurs between the initial two members, and the sequence seems to be rather sparse compared to the related A242805.
Here, the first member k of the sextet is the reference, whereas in A068088 the center k+3 is selected as reference. Observe that k+3 must be divisible by the square 4.
All terms are congruent to 9 (mod 12). - Zak Seidov, Apr 14 2015
From Robert Israel, Apr 15 2015: (Start)
All terms are congruent to 33 (mod 36).
Numbers k in A039833 such that k+4 is in A039833. (End)
From Robert G. Wilson v, Apr 15 2015: (Start)
k is congruent to 33 (mod 36) so one of its factors is 3 and the other is == 11 (mod 12);
k+1 is congruent to 34 (mod 36) so one of its factors is 2 and the other is == 17 (mod 18);
k+2 is congruent to 35 (mod 36) so its factors are == +-1 (mod 6);
k+4 is congruent to 1 (mod 36) so its factors are == +-1 (mod 6);
k+5 is congruent to 2 (mod 36) so one of its factors is 2 and the other is == 1 (mod 18);
k+6 is congruent to 3 (mod 36) so one of its factors is 3 and the other is == 1 (mod 12). (End).
Number of terms < 10^m: 0, 0, 1, 1, 1, 7, 39, 169, 882, 4852, 27479, ...,. - Robert G. Wilson v, Apr 15 2015
Or, numbers k such that k, k+1 and k+2 are terms in A175648. - Zak Seidov, Dec 08 2015

Examples

			213=3*71, 214=2*107, 215=5*43, 217=7*31, 218=2*109, 219=3*73.
		

Crossrefs

Cf. A242793 (minima for two, three and more prime divisors) and A068088 (arbitrary squarefree integers).

Programs

  • Maple
    f:= t -> numtheory:-issqrfree(t) and (numtheory:-bigomega(t) = 2):
    select(t -> andmap(f, [t,t+1,t+2,t+4,t+5,t+6]), [seq(36*k+33,k=0..10^6)]); # Robert Israel, Apr 15 2015
  • Mathematica
    fQ[n_] := PrimeQ[n/3] && PrimeQ[(n + 1)/2] && PrimeQ[(n + 5)/2] && PrimeQ[(n + 6)/3] && PrimeNu[{n + 2, n + 4}] == {2, 2} == PrimeOmega[{n + 2, n + 4}]; k = 33; lst = {}; While[k < 10^8, If[fQ@ k, AppendTo[lst, k]]; k += 36]; lst (* Robert G. Wilson v, Apr 14 2015 and revised Apr 15 2015 after Zak Seidov and Robert Israel *)
  • PARI
    default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=2; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
    				
  • PARI
    forstep(x=213,4221753,12, if( isprime(x/3) && isprime((x+1)/2) && 2==omega(x+2) && 2==bigomega(x+2) && 2==omega(x+4) && 2==bigomega(x+4) && isprime((x+5)/2) && isprime((x+6)/3), print1(x", "))) \\ Zak Seidov, Apr 14 2015

Formula

a(n) = A202319(n) - 1. - Jon Maiga, Jul 10 2021

A264044 Numbers n such that n and n+4 are consecutive semiprimes.

Original entry on oeis.org

10, 51, 58, 65, 87, 111, 129, 209, 249, 274, 291, 305, 335, 377, 382, 403, 407, 447, 454, 485, 489, 493, 497, 529, 538, 629, 681, 699, 713, 749, 767, 781, 785, 803, 831, 889, 901, 917, 939, 951, 961, 985, 989, 1007, 1037, 1073, 1115, 1191, 1207
Offset: 1

Views

Author

Zak Seidov, Nov 02 2015

Keywords

Comments

Note that a(1)=10=A131109(k=4).
Subsequence of A175648: a(1)=10=A175648(2), a(2)=51=A175648(7), a(3)=58=A175648(8), etc. - Zak Seidov, Dec 20 2017

Examples

			10=A001358(4) and 14=A001358(5).
		

Crossrefs

Programs

  • Maple
    B:= select(numtheory:-bigomega=2, [$1..2000]):
    B[select(t ->B[t+1]-B[t]=4, [$1..nops(B)-1])]; # Robert Israel, Dec 21 2017
  • Mathematica
    Select[Partition[Select[Range[1250], PrimeOmega@ # == 2 &], 2, 1], Differences@ # == {4} &][[All, 1]] (* Michael De Vlieger, Dec 20 2017 *)
    SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,1300}],{1,0,0,0,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 19 2020 *)
  • PARI
    is(n)=bigomega(n)==2 && bigomega(n+4)==2 && bigomega(n+1)!=2 && bigomega(n+2)!=2 && bigomega(n+3)!=2 \\ Charles R Greathouse IV, Nov 02 2015

A175663 Maximal run length of primes of the form n, n+2, n+2*3, n+2*3*5,..

Original entry on oeis.org

0, 1, 2, 0, 3, 0, 1, 0, 0, 0, 4, 0, 1, 0, 0, 0, 5, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 9, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 6, 0, 1, 0, 0
Offset: 1

Views

Author

Vladislav-Stepan Malakovsky & Juri-Stepan Gerasimov, Aug 04 2010

Keywords

Examples

			a(107)=8 because 107=prime, 107+2=109=prime, 107+2*3=113=prime, 107+2*3*5=137=prime, 107+2*3*5*7=317=prime, 107+2*3*5*7*11=2417=prime, 107+2*3*5*7*11*13=30137=prime, 107+2*3*5*7*11*13*17=510617=prime.
		

Crossrefs

Cf. A006512 (greater of twin primes), A175612 (list of twin semiprimes), A175648 (lesser of twin semiprimes).
Cf. also A175682.

Programs

  • Maple
    A002110 := proc(n) option remember; mul(ithprime(i),i=1..n) ; end proc:
    A175663 := proc(n) if isprime(n) then for p from 1 do if not isprime(n+A002110(p)) then return p ; end if; end do: else return 0 ; end if; end proc:
    seq(A175663(n),n=1..120) ; # R. J. Mathar, Aug 07 2010
  • Mathematica
    Array[If[PrimeQ@ #, Block[{s = {1}}, While[PrimeQ[# + Times @@ Prime@ s], AppendTo[s, s[[-1]] + 1]]; Last@ s], 0] &, 105] (* Michael De Vlieger, Jan 03 2019 *)
  • PARI
    A175663(n) = if(!isprime(n),0,my(pr=2); for(k=1, oo, if(!isprime(pr+n), return(k)); pr *= prime(1+k))); \\ Antti Karttunen, Jan 03 2019

Formula

a(n) <= A175682(n). - Antti Karttunen, Jan 03 2019

A175664 Greater of twin semiprimes.

Original entry on oeis.org

10, 14, 25, 26, 38, 39, 55, 62, 69, 86, 91, 95, 115, 119, 122, 123, 133, 145, 146, 159, 187, 205, 206, 209, 213, 217, 218, 219, 221, 253, 278, 291, 295, 299, 302, 303, 305, 309, 323, 327, 339, 362, 365, 381, 386, 395, 398, 407, 411, 415, 417, 451, 458, 473
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 04 2010

Keywords

Comments

Semiprimes m such that m-4 is also semiprime.

Examples

			a(1)=10 because 10 (semiprime) - 4 = 6 (semiprime);
a(2)=14 because 14 (semiprime) - 4 = 10 (semiprime).
		

Crossrefs

Cf. A006512 (greater of twin primes), A175612 (list of twin semiprimes), A175648 (lesser of twin semiprimes).

Programs

  • Maple
    A175664 := proc(n) option remember; if n = 1 then 10; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 and numtheory[bigomega](a-4) = 2 then return a; end if; end do: end if; end proc: seq(A175664(n),n=1..100) ; # R. J. Mathar, Aug 07 2010
  • Mathematica
    SequencePosition[Table[If[PrimeOmega[n]==2,1,0],{n,500}],{1,,,_,1}][[All,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 16 2017 *)

Formula

a(n) = 4 + A175648(n). - R. J. Mathar, Aug 07 2010

Extensions

Corrected (313 removed) by R. J. Mathar, Aug 07 2010

A255746 Squarefree semiprimes n such that n+4 is also a squarefree semiprime.

Original entry on oeis.org

6, 10, 22, 34, 35, 51, 58, 65, 82, 87, 91, 111, 115, 118, 119, 129, 141, 142, 155, 183, 201, 202, 205, 209, 213, 214, 215, 217, 249, 274, 287, 291, 295, 298, 299, 301, 305, 319, 323, 335, 358, 377, 382, 391, 394, 403, 407, 411, 413, 447, 454, 469, 478, 481
Offset: 1

Views

Author

Vladimir Shevelev, Jul 11 2015

Keywords

Comments

Conjecturally, the sequence is infinite.

Examples

			65 = 5*13; 65 + 4 = 69 = 3*23. So 65 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 500, And[SquareFreeQ@ #, PrimeOmega@ # == 2, SquareFreeQ[# + 4], PrimeOmega[# + 4] == 2] &] (* Michael De Vlieger, Jul 12 2015 *)
  • PARI
    main(size)={ v=vector(size); i=0; m=1; while(iAnders Hellström, Jul 11 2015 */

Formula

A000005(a(n)) = A000005(a(n)+4) = 4.

Extensions

More terms from Peter J. C. Moses, Jul 11 2015

A352132 Numbers k such that k, k+4, 3*k+4 and 3*k+8 are all semiprimes.

Original entry on oeis.org

6, 10, 118, 119, 129, 155, 287, 295, 299, 319, 377, 413, 447, 469, 511, 538, 629, 681, 699, 717, 785, 831, 865, 913, 1003, 1073, 1077, 1111, 1115, 1137, 1141, 1145, 1267, 1343, 1345, 1379, 1393, 1437, 1469, 1509, 1687, 1817, 1835, 1919, 1923, 1981, 2167, 2173, 2177, 2195, 2245, 2429, 2479, 2569
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 05 2022

Keywords

Comments

Numbers k such that k and 3*k+4 are both in A175648.
Even terms are 2*k for k in A174920.

Examples

			a(4) = 119 is a term because 119 = 7*17, 119+4 = 123 = 3*41, 3*119+4 = 361 = 19^2 and 3*119+8 = 365 = 5*73 are semiprimes.
		

Crossrefs

Programs

  • Maple
    filter:= proc(x)
    numtheory:-bigomega(x) = 2 and numtheory:-bigomega(x+4) = 2 and numtheory:-bigomega(3*x+4) = 2 and numtheory:-bigomega(3*x+8)=2
    end proc:
    select(filter, [$1..3000]);
  • Mathematica
    okQ[k_] := AllTrue[{k, k+4, 3k+4, 3k+8}, PrimeOmega[#] == 2&];
    Select[Range[3000], okQ] (* Jean-François Alcover, May 16 2023 *)

A175710 Numbers k such that k-4, k and k+4 are all semiprimes.

Original entry on oeis.org

10, 91, 115, 119, 205, 209, 213, 217, 291, 295, 299, 305, 323, 407, 411, 485, 489, 493, 497, 501, 515, 533, 685, 699, 703, 717, 749, 767, 785, 789, 803, 917, 955, 989, 1007, 1077, 1115, 1137, 1141, 1145, 1195, 1199, 1203, 1207, 1257, 1267, 1333, 1343, 1347
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 12 2010

Keywords

Comments

If k is a term, one of k-4, k and k+4 is 3 times a prime. - Robert Israel, Mar 25 2025

Examples

			a(1)=10 because 10-4=6, 10 and 10+4=14 are all semiprimes.
		

Crossrefs

Programs

  • Maple
    SP:= select(t -> numtheory:-bigomega(t) = 2, {$1..10000}):
    sort(convert(SP intersect (SP +~ 4) intersect (SP -~ 4),list)); # Robert Israel, Mar 25 2025

Extensions

Corrected (299, 411 etc inserted) by R. J. Mathar, Aug 13 2010
Name edited by Robert Israel, Mar 25 2025
Showing 1-9 of 9 results.