A175676 a(n) = binomial(n,3) mod n.
0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0, 5, 0, 0, 6, 0, 0, 7, 0, 0, 8, 0, 0, 9, 0, 0, 10, 0, 0, 11, 0, 0, 12, 0, 0, 13, 0, 0, 14, 0, 0, 15, 0, 0, 16, 0, 0, 17, 0, 0, 18, 0, 0, 19, 0, 0, 20, 0, 0, 21, 0, 0, 22, 0, 0, 23, 0, 0, 24, 0, 0, 25, 0, 0, 26, 0, 0, 27, 0, 0, 28, 0, 0, 29, 0, 0, 30, 0, 0, 31, 0
Offset: 1
Links
- Altug Alkan, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
Crossrefs
Cf. A007290.
Programs
-
GAP
List([1..100],n->Binomial(n,3) mod n); # Muniru A Asiru, Apr 05 2018
-
Mathematica
Table[Mod[Binomial[n,3],n],{n,150}]
-
PARI
a(n)=if(n%3, 0, n/3); \\ Charles R Greathouse IV, Sep 02 2015 [Corrected by Altug Alkan, Apr 02 2018]
-
PARI
a(n)=!(n%3)*(1-n)\-3; \\ Altug Alkan, Apr 02 2018
Formula
a(n) = n/3 if n==0 (mod 3) else a(n) = 0.
G.f.: x^3 / ( (x-1)^2*(1+x+x^2)^2 ). - R. J. Mathar, Mar 11 2011
a(n) = (n + 2*n*cos((2*n*Pi)/3))/9. - Kritsada Moomuang, Apr 02 2018
Comments