cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A289844 p-INVERT of A175676 (starting at n=3), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 2, 3, 7, 16, 31, 64, 134, 274, 567, 1168, 2405, 4967, 10232, 21094, 43505, 89672, 184892, 381203, 785886, 1620327, 3340606, 6887304, 14199737, 29275538, 60357622, 124439898, 256558196, 528948160, 1090536002, 2248364880, 4635470266, 9556979689, 19703689739
Offset: 0

Views

Author

Clark Kimberling, Aug 12 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0) + c(1)*x + c(2)*x^2 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/((x - 1)^2*(1 + x + x^2)^2); p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A175676, shifted *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289844 *)
  • PARI
    Vec((1 + x - 2*x^3 + x^6) / (1 - x - x^2 - 4*x^3 + 2*x^4 + 6*x^6 - x^7 - 4*x^9 + x^12) + O(x^60)) \\ Colin Barker, Aug 13 2017

Formula

a(n) = a(n-1) + a(n-2) + 4*a(n-3) - 2*a(n-4) - 6*a(n-7) + a(n-8) + 4*a(n-10) - a(n-13).
G.f.: (1 + x - 2*x^3 + x^6) / (1 - x - x^2 - 4*x^3 + 2*x^4 + 6*x^6 - x^7 - 4*x^9 + x^12). - Colin Barker, Aug 13 2017

A213042 Convolution of (1,0,2,0,3,0,...) and (1,0,0,2,0,0,3,0,0,...); i.e., (A027656(n)) and (A175676(n+2)).

Original entry on oeis.org

1, 0, 2, 2, 3, 4, 7, 6, 11, 12, 15, 18, 24, 24, 33, 36, 42, 48, 58, 60, 74, 80, 90, 100, 115, 120, 140, 150, 165, 180, 201, 210, 237, 252, 273, 294, 322, 336, 371, 392, 420, 448, 484, 504, 548, 576, 612, 648, 693, 720, 774, 810, 855, 900, 955, 990, 1055
Offset: 0

Views

Author

Clark Kimberling, Jun 10 2012

Keywords

Examples

			a(6) = (1,0,2,0,3,0,4)**(1,0,0,2,0,0,3) = 1*3 + 0*0 + 2*0 + 0*2 + 3*0 + 0*0 + 4*1 = 7.
		

Programs

  • Mathematica
    s = Normal[Series[1/((1 - x^2)^2 (1 - x^3)^2),
    {x, 0, 80}]]
    c = CoefficientList[s, t]  (* A213042 *)

Formula

a(n) = 2*a(n-2)+2*a(n-3)-a(n-4)-4*a(n-5)-a(n-6)+2*a(n-7)+2*a(n-8)-a(n-10).
G.f.: 1/(((1 - x^2)^2)*(1 - x^3)^2).

A289780 p-INVERT of the positive integers (A000027), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 4, 14, 47, 156, 517, 1714, 5684, 18851, 62520, 207349, 687676, 2280686, 7563923, 25085844, 83197513, 275925586, 915110636, 3034975799, 10065534960, 33382471801, 110713382644, 367182309614, 1217764693607, 4038731742156, 13394504020957, 44423039068114
Offset: 0

Views

Author

Clark Kimberling, Aug 10 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x).
Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
Guide to p-INVERT sequences using p(S) = 1 - S - S^2:
t(A000012) = t(1,1,1,1,1,1,1,...) = A001906
t(A000290) = t(1,4,9,16,25,36,...) = A289779
t(A000027) = t(1,2,3,4,5,6,7,8,...) = A289780
t(A000045) = t(1,2,3,5,8,13,21,...) = A289781
t(A000032) = t(2,1,3,4,7,11,14,...) = A289782
t(A000244) = t(1,3,9,27,81,243,...) = A289783
t(A000302) = t(1,4,16,64,256,...) = A289784
t(A000351) = t(1,5,25,125,625,...) = A289785
t(A005408) = t(1,3,5,7,9,11,13,...) = A289786
t(A005843) = t(2,4,6,8,10,12,14,...) = A289787
t(A016777) = t(1,4,7,10,13,16,...) = A289789
t(A016789) = t(2,5,8,11,14,17,...) = A289790
t(A008585) = t(3,6,9,12,15,18,...) = A289795
t(A000217) = t(1,3,6,10,15,21,...) = A289797
t(A000225) = t(1,3,7,15,31,63,...) = A289798
t(A000578) = t(1,8,27,64,625,...) = A289799
t(A000984) = t(1,2,6,20,70,252,...) = A289800
t(A000292) = t(1,4,10,20,35,56,...) = A289801
t(A002620) = t(1,2,4,6,9,12,16,...) = A289802
t(A001906) = t(1,3,8,21,55,144,...) = A289803
t(A001519) = t(1,1,2,5,13,34,...) = A289804
t(A103889) = t(2,1,4,3,6,5,8,7,,...) = A289805
t(A008619) = t(1,1,2,2,3,3,4,4,...) = A289806
t(A080513) = t(1,2,2,3,3,4,4,5,...) = A289807
t(A133622) = t(1,2,1,3,1,4,1,5,...) = A289809
t(A000108) = t(1,1,2,5,14,42,...) = A081696
t(A081696) = t(1,1,3,9,29,97,...) = A289810
t(A027656) = t(1,0,2,0,3,0,4,0,5...) = A289843
t(A175676) = t(1,0,0,2,0,0,3,0,...) = A289844
t(A079977) = t(1,0,1,0,2,0,3,...) = A289845
t(A059841) = t(1,0,1,0,1,0,1,...) = A289846
t(A000040) = t(2,3,5,7,11,13,...) = A289847
t(A008578) = t(1,2,3,5,7,11,13,...) = A289828
t(A000142) = t(1!, 2!, 3!, 4!, ...) = A289924
t(A000201) = t(1,3,4,6,8,9,11,...) = A289925
t(A001950) = t(2,5,7,10,13,15,...) = A289926
t(A014217) = t(1,2,4,6,11,17,29,...) = A289927
t(A000045*) = t(0,1,1,2,3,5,...) = A289975 (* indicates prepended 0's)
t(A000045*) = t(0,0,1,1,2,3,5,...) = A289976
t(A000045*) = t(0,0,0,1,1,2,3,5,...) = A289977
t(A290990*) = t(0,1,2,3,4,5,...) = A290990
t(A290990*) = t(0,0,1,2,3,4,5,...) = A290991
t(A290990*) = t(0,0,01,2,3,4,5,...) = A290992

Examples

			Example 1:  s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S.
S(x) = x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - (x + 2x^2 + 3x^3 + 4x^4 + ... )
- p(0) + 1/p(S(x)) = -1 + 1 + x + 3x^2 + 8x^3 + 21x^4 + ...
T(x) = 1 + 3x + 8x^2 + 21x^3 + ...
t(s) = (1,3,8,21,...) = A001906.
***
Example 2:  s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S - S^2.
S(x) =  x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - ( x + 2x^2 + 3x^3 + 4x^4 + ...) - ( x + 2x^2 + 3x^3 + 4x^4 + ...)^2
- p(0) + 1/p(S(x)) = -1 + 1 + x + 4x^2 + 14x^3 + 47x^4 + ...
T(x) = 1 + 4x + 14x^2 + 47x^3 + ...
t(s) = (1,4,14,47,...) = A289780.
		

Crossrefs

Cf. A000027.

Programs

  • GAP
    P:=[1,4,14,47];; for n in [5..10^2] do P[n]:=5*P[n-1]-7*P[n-2]+5*P[n-3]-P[n-4]; od; P; # Muniru A Asiru, Sep 03 2017
  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289780 *)
  • PARI
    x='x+O('x^99); Vec((1-x+x^2)/(1-5*x+7*x^2-5*x^3+x^4)) \\ Altug Alkan, Aug 13 2017
    

Formula

G.f.: (1 - x + x^2)/(1 - 5 x + 7 x^2 - 5 x^3 + x^4).
a(n) = 5*a(n-1) - 7*a(n-2) + 5*a(n-3) - a(n-4).

A211343 Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists the positive integers interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2.

Original entry on oeis.org

1, 2, 3, 1, 4, 0, 5, 2, 6, 0, 1, 7, 3, 0, 8, 0, 0, 9, 4, 2, 10, 0, 0, 1, 11, 5, 0, 0, 12, 0, 3, 0, 13, 6, 0, 0, 14, 0, 0, 2, 15, 7, 4, 0, 1, 16, 0, 0, 0, 0, 17, 8, 0, 0, 0, 18, 0, 5, 3, 0, 19, 9, 0, 0, 0, 20, 0, 0, 0, 2, 21, 10, 6, 0, 0, 1, 22, 0, 0, 4, 0, 0, 23, 11, 0, 0, 0, 0, 24, 0, 7, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Feb 05 2013

Keywords

Comments

The number of positive terms in row n is A001227(n).
If n = 2^j then the only positive integer in row n is T(n,1) = n
If n is an odd prime then the only two positive integers in row n are T(n,1) = n and T(n,2) = (n - 1)/2.
From Omar E. Pol, Apr 30 2017: (Start)
Conjecture 1: T(n,k) is the smallest part of the partition of n into k consecutive parts, if T(n,k) > 0.
Conjecture 2: the last positive integer in the row n is in the column A109814(n). (End)

Examples

			Triangle begins:
   1;
   2;
   3,  1;
   4,  0;
   5,  2;
   6,  0,  1;
   7,  3,  0;
   8,  0,  0;
   9,  4,  2;
  10,  0,  0,  1;
  11,  5,  0,  0;
  12,  0,  3,  0;
  13,  6,  0,  0;
  14,  0,  0,  2;
  15,  7,  4,  0,  1;
  16,  0,  0,  0,  0;
  17,  8,  0,  0,  0;
  18,  0,  5,  3,  0;
  19,  9,  0,  0,  0;
  20,  0,  0,  0,  2;
  21, 10,  6,  0,  0,  1;
  22,  0,  0,  4,  0,  0;
  23, 11,  0,  0,  0,  0;
  24,  0,  7,  0,  0,  0;
  25, 12,  0,  0,  3,  0;
  26,  0,  0,  5,  0,  0;
  27, 13,  8,  0,  0,  2;
  28,  0,  0,  0,  0,  0,  1;
  ...
In accordance with the conjectures, for n = 15 there are four partitions of 15 into consecutive parts: [15], [8, 7], [6, 5, 4] and [5, 4, 3, 2, 1]. The smallest parts of these partitions are 15, 7, 4, 1, respectively, so the 15th row of the triangle is [15, 7, 4, 0, 1]. - _Omar E. Pol_, Apr 30 2017
		

Crossrefs

Columns 1-3: A000027, A027656, A175676.
Column k starts in row A000217(k).
Row n has length A003056(n).

Programs

  • Mathematica
    a196020[n_, k_]:=If[Divisible[n - k(k + 1)/2, k], 2n/k - k, 0]; T[n_, k_]:= Floor[(1 + a196020[n, k])/2]; Table[T[n, k], {n, 28}, {k, Floor[(Sqrt[8n+1]-1)/2]}] // Flatten (* Indranil Ghosh, Apr 30 2017 *)
  • Python
    from sympy import sqrt
    import math
    def a196020(n, k):return 2*n/k - k if (n - k*(k + 1)/2)%k == 0 else 0
    def T(n, k): return int((1 + a196020(n, k))/2)
    for n in range(1, 29): print([T(n, k) for k in range(1, int((sqrt(8*n + 1) - 1)/2) + 1)]) # Indranil Ghosh, Apr 30 2017

Formula

T(n,k) = floor((1 + A196020(n,k))/2).
T(n,k) = A237048(n,k)*A286001(n,k). - Omar E. Pol, Aug 13 2018

A049992 a(n) is the number of arithmetic progressions of 3 or more positive integers, nondecreasing with sum n.

Original entry on oeis.org

0, 0, 1, 1, 1, 3, 1, 2, 4, 3, 1, 7, 1, 3, 8, 4, 1, 10, 1, 6, 10, 4, 1, 14, 4, 4, 12, 7, 1, 19, 1, 6, 14, 5, 7, 22, 1, 5, 16, 12, 1, 24, 1, 8, 25, 6, 1, 27, 4, 12, 21, 9, 1, 29, 9, 12, 23, 7, 1, 40, 1, 7, 30, 11, 10, 35, 1, 10, 27, 21, 1, 42, 1, 8, 39, 11, 7, 40, 1, 22, 35, 9, 1, 49, 12, 9, 34
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: Sum_{k>=3} x^k/(1-x^(k*(k-1)/2))/(1-x^k). [Leroy Quet from A049988] - Petros Hadjicostas, Sep 29 2019
a(n) = A014405(n) + A023645(n) = A049994(n) + A175676(n). [Two of the formulas listed by Sequence Machine, both obviously true] - Antti Karttunen, Feb 20 2023

Extensions

More terms from Petros Hadjicostas, Sep 29 2019

A049994 a(n) is the number of arithmetic progressions of 4 or more positive integers, nondecreasing with sum n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 3, 3, 4, 1, 4, 1, 6, 3, 4, 1, 6, 4, 4, 3, 7, 1, 9, 1, 6, 3, 5, 7, 10, 1, 5, 3, 12, 1, 10, 1, 8, 10, 6, 1, 11, 4, 12, 4, 9, 1, 11, 9, 12, 4, 7, 1, 20, 1, 7, 9, 11, 10, 13, 1, 10, 4, 21, 1, 18, 1, 8, 14, 11, 7, 14, 1, 22, 8, 9, 1, 21, 12, 9, 5, 15, 1, 29, 8
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: Sum_{k >= 4} x^k/(1-x^(k*(k-1)/2))/(1-x^k). [Leroy Quet from A049988] - Petros Hadjicostas, Sep 29 2019
a(n) = A049992(n) - A175676(n) = A049986(n) + A321014(n). [Two of the formulas listed by Sequence Machine, both obviously true] - Antti Karttunen, Feb 20 2023

Extensions

More terms from Petros Hadjicostas, Sep 29 2019

A366125 The number of prime factors of the cube root of the largest unitary divisor of n that is a cube (A366126), counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2023

Keywords

Comments

First differs from A295662 at n = 32, and from A295883, A318673, A359472 and A366124 at n = 64.
One third of the sum of exponents that are divisible by 3 in the prime factorization of n.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[Divisible[e, 3], e/3, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> if(!(x%3), x/3, 0), factor(n)[, 2]));

Formula

a(n) = A001222(A366126(n))/3.
Additive with a(p^e) = A175676(e) = e if e is divisible by 3, and 0 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} p^2*(p-1)/(p^3-1)^2 = 0.35687351842962928035... .

A088439 a(3n) = 3n, otherwise a(n) = 1.

Original entry on oeis.org

0, 1, 1, 3, 1, 1, 6, 1, 1, 9, 1, 1, 12, 1, 1, 15, 1, 1, 18, 1, 1, 21, 1, 1, 24, 1, 1, 27, 1, 1, 30, 1, 1, 33, 1, 1, 36, 1, 1, 39, 1, 1, 42, 1, 1, 45, 1, 1, 48, 1, 1, 51, 1, 1, 54, 1, 1, 57, 1, 1, 60, 1, 1, 63, 1, 1, 66, 1, 1, 69, 1, 1, 72, 1, 1, 75, 1, 1, 78, 1, 1, 81, 1, 1, 84, 1, 1, 87, 1, 1, 90, 1, 1
Offset: 0

Views

Author

Roger L. Bagula, Nov 09 2003

Keywords

Crossrefs

Programs

  • Magma
    [n mod 3 eq 0 select n else 1: n in [0..100]];  // Bruno Berselli, Mar 11 2011
    
  • Mathematica
    Table[If[Divisible[n,3],n,1],{n,0,100}] (* or *) LinearRecurrence[ {0,0,2,0,0,-1},{0,1,1,3,1,1},100] (* Harvey P. Dale, Jun 18 2018 *)
  • SageMath
    def A088439(n): return 1 if (n%3) else n
    [A088439(n) for n in range(121)] # G. C. Greubel, Dec 05 2022

Formula

From Bruno Berselli, Mar 11 2011: (Start)
G.f.: x*(1+x+3*x^2-x^3-x^4)/(1-x^3)^2.
a(n) = n^A079978(n).
a(n) = 3*A175676(n-1) + A011655(n) for n>0. (End)
E.g.f.: (1/3)*(x+2)*exp(x) - (2/3)*exp(-x/2)*( cos(sqrt(3)*x/2) + x*sin((Pi + 3*sqrt(3)*x)/6) ). - G. C. Greubel, Dec 05 2022

A117910 Expansion of (1 + x + x^2 + x^4)/((1-x^3)*(1-x^6)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 4, 2, 3, 5, 3, 3, 6, 3, 4, 7, 4, 4, 8, 4, 5, 9, 5, 5, 10, 5, 6, 11, 6, 6, 12, 6, 7, 13, 7, 7, 14, 7, 8, 15, 8, 8, 16, 8, 9, 17, 9, 9, 18, 9, 10, 19, 10, 10, 20, 10, 11, 21, 11, 11, 22, 11, 12, 23, 12, 12, 24, 12, 13, 25, 13, 13, 26, 13, 14, 27, 14
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Diagonal sums of A117908.
Appears to be a permutation of floor((n+5)/5).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 100); Coefficients(R!( (1+x+x^2+x^4)/((1-x^3)*(1-x^6)) )); // G. C. Greubel, Oct 21 2021
    
  • Mathematica
    CoefficientList[Series[(1+x+x^2+x^4)/((1-x^3)(1-x^6)),{x,0,100}],x] (* or *) LinearRecurrence[{0,0,1,0,0,1,0,0,-1},{1,1,1,1,2,1,2,3,2},100] (* Harvey P. Dale, Apr 10 2014 *)
    Table[If[Mod[n,3]==1, Mod[Binomial[n+2,3], n+2], Floor[(n+6)/6]], {n, 0, 100}] (* G. C. Greubel, Nov 18 2021 *)
  • Sage
    def A117910_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x+x^2+x^4)/((1-x^3)*(1-x^6)) ).list()
    A117910_list(100) # G. C. Greubel, Oct 21 2021

Formula

a(n) = a(n-3) + a(n-6) - a(n-9).
a(n) = Sum_{k=0..floor(n/2)} 0^abs(L(C(n-k,2)/3) - 2*L(C(k,2)/3)) where L(j/p) is the Legendre symbol of j and p.
From G. C. Greubel, Nov 18 2021: (Start)
a(n) = A152467(n+3) + A152467(n+6) if n == 1 (mod 3), otherwise A152467(n+6).
a(n) = A175676(n+2) if n == 1 (mod 3), otherwise A152467(n+6).
a(n) = A002264(n+3) if n == 1 (mod 3), otherwise A152467(n+6). (End)
Showing 1-9 of 9 results.