cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A175749 Numbers with 40 divisors.

Original entry on oeis.org

1680, 2160, 2640, 3024, 3120, 3240, 3696, 4080, 4368, 4536, 4560, 4752, 5520, 5616, 5670, 5712, 6000, 6160, 6384, 6864, 6960, 7128, 7280, 7344, 7440, 7680, 7728, 8208, 8424, 8880, 8910, 8976, 9520, 9744, 9840, 9936, 10032, 10320, 10368, 10416, 10530, 10608
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the forms p^39, p^19*q^1, p^9*q^3, p^7*q^4, p^9*q^1*r^1, p^4*q^3*r^1 (A179698), and p^4*q^1*r^1*s^1 (A179693), where p, q, r, and s are distinct primes.

Crossrefs

Programs

Formula

A000005(a(n))=40.

A175748 Numbers with 39 divisors.

Original entry on oeis.org

36864, 102400, 200704, 495616, 692224, 1183744, 1478656, 2125764, 2166784, 3444736, 3936256, 5607424, 6885376, 7573504, 9048064, 11505664, 13286025, 14258176, 15241216, 18386944, 20647936, 21827584, 25563136, 26040609, 28217344, 32444416, 38539264, 41783296
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the forms p^38 and p^12*q^2, where p and q are distinct primes.

Crossrefs

Programs

Formula

A000005(a(n)) = 39.
Sum_{n>=1} 1/a(n) = P(2)*P(12) - P(14) + P(38) = 0.0000500204..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

Extensions

Extended by T. D. Noe, May 08 2011

A065985 Numbers k such that d(k) / 2 is prime, where d(k) = number of divisors of k.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 106, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 125, 129, 133, 134
Offset: 1

Views

Author

Joseph L. Pe, Dec 10 2001

Keywords

Comments

Numbers whose sorted prime signature (A118914) is either of the form {2*p-1} or {1, p-1}, where p is a prime. Equivalently, disjoint union of numbers of the form q^(2*p-1) where p and q are primes, and numbers of the form r * q^(p-1), where p, q and r are primes and r != q. - Amiram Eldar, Sep 09 2024

Crossrefs

Numbers with exactly 2*p divisors: A030513 (p=2), A030515 (p=3), A030628 \ {1} (p=5), A030632 (p=7), A137485 (p=11), A137489 (p=13), A175744 (p=17), A175747 (p=19).

Programs

  • Mathematica
    Select[Range[1, 1000], PrimeQ[DivisorSigma[0, # ] / 2] == True &]
  • PARI
    n=0; for (m=1, 10^9, f=numdiv(m)/2; if (frac(f)==0 && isprime(f), write("b065985.txt", n++, " ", m); if (n==1000, return))) \\ Harry J. Smith, Nov 05 2009
    
  • PARI
    is(n)=n=numdiv(n)/2; denominator(n)==1 && isprime(n) \\ Charles R Greathouse IV, Oct 15 2015

A274810 Numbers n such that n and n+1 both have 38 divisors.

Original entry on oeis.org

9399153082499072, 20164508489351168, 21992587709382656, 25039386409435136, 25537472011436031, 26756191491457023, 45443223518445567, 47474422651813887, 59772891590033408, 64241529683443712, 73381925783601152
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A005237 and A175747.

Programs

  • PARI
    is(n)=numdiv(n)==38 && numdiv(n+1)==38
    
  • PARI
    has(n)=if(n%4==2, ispower(n/2, 18, &n) && isprime(n), bitand(n, 524287)==262144 && isprime(n>>18) && n>262144) \\ check if n is even with 38 divisors
    list(lim)=my(v=List(), t); forprime(p=2, sqrtnint(lim\=1, 37), t=p^37; if(has(t+1), listput(v, t)); if(has(t-1), listput(v, t-1))); forprime(p=3, sqrtnint(lim\3, 18), my(p18=p^18); forprime(q=3, lim\p18, if(p==q, next); t=p18*q; if(has(t+1), listput(v, t)); if(has(t-1), listput(v, t-1)))); Set(v)
Showing 1-4 of 4 results.