cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175887 Numbers that are congruent to {1, 14} mod 15.

Original entry on oeis.org

1, 14, 16, 29, 31, 44, 46, 59, 61, 74, 76, 89, 91, 104, 106, 119, 121, 134, 136, 149, 151, 164, 166, 179, 181, 194, 196, 209, 211, 224, 226, 239, 241, 254, 256, 269, 271, 284, 286, 299, 301, 314, 316, 329, 331, 344, 346, 359, 361, 374, 376, 389, 391, 404
Offset: 1

Views

Author

Bruno Berselli, Oct 08 2010 - Nov 17 2010

Keywords

Comments

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1==0 (mod h); in this case, a(n)^2-1==0 (mod 15).

Crossrefs

Programs

  • Haskell
    a175887 n = a175887_list !! (n-1)
    a175887_list = 1 : 14 : map (+ 15) a175887_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [n: n in [1..450] | n mod 15 in [1,14]];
    
  • Magma
    [(30*n+11*(-1)^n-15)/4: n in [1..55]]; // Vincenzo Librandi, Aug 19 2013
    
  • Mathematica
    Select[Range[1, 450], MemberQ[{1,14}, Mod[#, 15]]&]
    CoefficientList[Series[(1 + 13 x + x^2) / ((1 + x) (1 - x)^2), {x, 0, 55}], x] (* Vincenzo Librandi, Aug 19 2013 *)
  • PARI
    a(n)=(30*n+11*(-1)^n-15)/4 \\ Charles R Greathouse IV, Sep 28 2015

Formula

G.f.: x*(1+13*x+x^2)/((1+x)*(1-x)^2).
a(n) = (30*n+11*(-1)^n-15)/4.
a(n) = -a(-n+1) = a(n-1)+a(n-2)-a(n-3).
a(n) = 15*A000217(n-1) -2*sum(a(i), i=1..n-1) +1 for n>1.
a(n) = A047209(A047225(n+1)).
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/15)*cot(Pi/15) = A019693 * A019976 / 10. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((30*x - 15)*exp(x) + 11*exp(-x))/4. - David Lovler, Sep 05 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = (Pi/15)*cosec(Pi/15).
Product_{n>=2} (1 + (-1)^n/a(n)) = 2*cos(Pi/15). (End)