A176027 Binomial transform of A005563.
0, 3, 14, 48, 144, 400, 1056, 2688, 6656, 16128, 38400, 90112, 208896, 479232, 1089536, 2457600, 5505024, 12255232, 27131904, 59768832, 131072000, 286261248, 622854144, 1350565888, 2919235584, 6291456000, 13522436096
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
Programs
-
Magma
[2^(n-2)*n*(5+n) : n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
-
Mathematica
LinearRecurrence[{6,-12,8},{0,3,14},30] (* Harvey P. Dale, Oct 19 2015 *)
-
PARI
a(n)=n*(n+5)<<(n-2) \\ Charles R Greathouse IV, Sep 21 2017
Formula
G.f.: x*(-3+4*x)/(2*x-1)^3. - R. J. Mathar, Dec 11 2010
a(n) = 2^(n-2)*n*(5+n). - R. J. Mathar, Dec 11 2010
a(n+1)-a(n) = A084266(n+1).
a(n+2) = 16*A058396(n) for n > 0.
a(n) = 2*a(n-1) + A001792(n).
a(n) = A001793(n) - 2^(n-1) for n > 0. - Brad Clardy, Mar 02 2012
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} (k+3) * C(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
From Amiram Eldar, Aug 13 2022: (Start)
Sum_{n>=1} 1/a(n) = 1322/75 - 124*log(2)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = 132*log(3/2)/5 - 782/75. (End)
Comments