cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176027 Binomial transform of A005563.

Original entry on oeis.org

0, 3, 14, 48, 144, 400, 1056, 2688, 6656, 16128, 38400, 90112, 208896, 479232, 1089536, 2457600, 5505024, 12255232, 27131904, 59768832, 131072000, 286261248, 622854144, 1350565888, 2919235584, 6291456000, 13522436096
Offset: 0

Views

Author

Paul Curtz, Dec 06 2010

Keywords

Comments

The numbers appear on the diagonal of a table T(n,k), where the left column contains the elements of A005563, and further columns are recursively T(n,k) = T(n,k-1)+T(n-1,k-1):
....0....-1.....0.....0.....0.....0.....0.....0.....0.....0.
....3.....3.....2.....2.....2.....2.....2.....2.....2.....2.
....8....11....14....16....18....20....22....24....26....28.
...15....23....34....48....64....82...102...124...148...174.
...24....39....62....96...144...208...290...392...516...664.
...35....59....98...160...256...400...608...898..1290..1806.
...48....83...142...240...400...656..1056..1664..2562..3852.
...63...111...194...336...576...976..1632..2688..4352..6914.
...80...143...254...448...784..1360..2336..3968..6656.11008.
...99...179...322...576..1024..1808..3168..5504..9472.16128.
..120...219...398...720..1296..2320..4128..7296.12800.22272.
The second column is A142463, the third A060626, the fourth essentially A035008 and the fifth essentially A016802. Transposing the array gives A005563 and its higher order differences in the individual rows.

Crossrefs

Programs

Formula

G.f.: x*(-3+4*x)/(2*x-1)^3. - R. J. Mathar, Dec 11 2010
a(n) = 2^(n-2)*n*(5+n). - R. J. Mathar, Dec 11 2010
a(n) = A127276(n) - A127276(n+1).
a(n+1)-a(n) = A084266(n+1).
a(n+2) = 16*A058396(n) for n > 0.
a(n) = 2*a(n-1) + A001792(n).
a(n) = A001793(n) - 2^(n-1) for n > 0. - Brad Clardy, Mar 02 2012
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} (k+3) * C(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
From Amiram Eldar, Aug 13 2022: (Start)
Sum_{n>=1} 1/a(n) = 1322/75 - 124*log(2)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = 132*log(3/2)/5 - 782/75. (End)