cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A178987 a(n) = n*(n-3)*2^(n-2).

Original entry on oeis.org

0, -1, -2, 0, 16, 80, 288, 896, 2560, 6912, 17920, 45056, 110592, 266240, 630784, 1474560, 3407872, 7798784, 17694720, 39845888, 89128960, 198180864, 438304768, 964689920, 2113929216, 4613734400, 10032775168, 21743271936, 46976204800, 101200166912
Offset: 0

Views

Author

Paul Curtz, Jan 03 2011

Keywords

Comments

Binomial transform of 0, -1 followed by A005563.
The sequence defines an array by adding higher order differences in successive rows:
0, -1, -2, 0, 16, 80, 288, 896, 2560, 6912, 17920, 45056, 110592, ...
-1, -1, 2, 16, 64, 208, 608, 1664, 4352, 11008, 27136, 65536, ... A127276
0, 3, 14, 48, 144, 400, 1056, 2688, 6656, 16128, 38400, 90112, 208896, ... A176027
3, 11, 34, 96, 256, 656, 1632, 3968, 9472, 22272, 51712, 118784, ... A084266
8, 23, 62, 160, 400, 976, 2336, 5504, 12800, 29440, 67072, ...
The left column of the array (binomial transform of the sequence) is A067998.
For n>2, the sequence gives the number of permutations in the symmetric group S_{n+1} with peaks exactly in positions 2 and n-1. See Theorem 10 in [Billey-Burdzy-Sagan] reference.

Crossrefs

Cf. A176027.

Programs

  • Magma
    [n*(n-3)*2^(n-2): n in [0..30]]; // Vincenzo Librandi, Aug 04 2011
  • Mathematica
    Table[n(n-3)2^(n-2),{n,0,30}] (* or *) LinearRecurrence[{6,-12,8},{0,-1,-2},30] (* Harvey P. Dale, Mar 24 2023 *)

Formula

a(n) = 16*A001793(n-3), n > 3.
a(n) = 8*A001788(n-2)-A052481(n-1). - R. J. Mathar, Jan 04 2011
a(n) = +6*a(n-1) -12*a(n-2) +8*a(n-3).
a(n+1)-a(n) = -A127276(n).
G.f.: -x*(-1+4*x)/(2*x-1)^3. - R. J. Mathar, Jan 04 2011
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} (k-1) * C(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
a(n) = Sum_{k=0..n} k^2 * (-1)^k * 3^(n-k) * binomial(n,k). - Seiichi Manyama, Apr 18 2025

A178242 Numerator of n*(5+n)/((n+1)*(n+4)).

Original entry on oeis.org

0, 3, 7, 6, 9, 25, 33, 21, 26, 63, 75, 44, 51, 117, 133, 75, 84, 187, 207, 114, 125, 273, 297, 161, 174, 375, 403, 216, 231, 493, 525, 279, 296, 627, 663, 350, 369, 777, 817, 429, 450, 943, 987, 516, 539, 1125, 1173, 611, 636, 1323, 1375, 714, 741, 1537, 1593
Offset: 0

Views

Author

Paul Curtz, Dec 20 2010

Keywords

Comments

Sequence of differences denominator(n) - numerator(n) = 1,2,2,1... = A014695(n).
Denominator: A160050(n+2).

Examples

			The reduced fractions are 0, 3/5, 7/9, 6/7, 9/10, 25/27, 33/35, 21/22, 26/27, 63/65, 75/77, 44/45, ..
		

Crossrefs

Programs

  • Magma
    [Floor(n*(n+5)*((-1)^((2*n-(-1)^n-3)/4)+3)/8) : n in [0..50]]; // Vincenzo Librandi, Oct 08 2011
    
  • Maple
    A178242 := proc(n) n*(5+n)/(n+1)/(n+4) ;  numer(%) ;end proc:
    seq(A178242(n),n=0..80) ; # R. J. Mathar, Dec 20 2010
  • Mathematica
    f[n_] := n/GCD[n, 4]; Array[f[#] f[# + 5] &, 50, 0]
    Table[Numerator[n*(5+n)/((n+1)*(n+4))], {n,0,50}] (* G. C. Greubel, Sep 21 2018 *)
  • PARI
    vector(50, n, n--; numerator(n*(5+n)/((n+1)*(n+4)))) \\ G. C. Greubel, Sep 21 2018

Formula

a(n) = numerator(A176027(n)/A001793(n+1)).
a(n) = A060819(n)*A060819(n+5).
a(n) = +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +a(n-9).
a(n) = 3*a(n-4) -3*a(n-8) +a(n-12).
G.f.: x*(-3+2*x-3*x^2-3*x^3+x^7) / ( (x-1)^3*(x^2+1)^3 ).
a(n) = n*(n+5)*((-1)^((2*n-(-1)^n-3)/4)+3)/8 = n*(n+5)*(3-i^(n*(n+1)))/8, where i=sqrt(-1); also a(n) = a(n-4)*A028557(n)/A028557(n-4) for n>4. - Bruno Berselli, Dec 30 2010
From Peter Bala, Aug 07 2022: (Start)
a(n) = numerator of n*(n+5)/4.
a(n) is quasi-polynomial in n: a(4*n) = n*(4*n+5) = A343560(n+1); a(4*n+1) = (2*n+3)*(4*n+1); a(4*n+2) = (2*n+1)*(4*n+7); a(4*n+3) = (n+2)*(4*n+3) = A180863(n+2). (End)
Sum_{n>=1} 1/a(n) = 112/75 - Pi/10. - Amiram Eldar, Aug 16 2022

A181407 a(n) = (n-4)*(n-3)*2^(n-2).

Original entry on oeis.org

3, 3, 2, 0, 0, 16, 96, 384, 1280, 3840, 10752, 28672, 73728, 184320, 450560, 1081344, 2555904, 5963776, 13762560, 31457280, 71303168, 160432128, 358612992, 796917760, 1761607680, 3875536896, 8489271296, 18522046464, 40265318400, 87241523200, 188441690112
Offset: 0

Views

Author

Paul Curtz, Jan 28 2011

Keywords

Comments

Binomial transform of (3, 0, -1, followed by A005563).
The sequence and its successive differences are:
3, 3, 2, 0, 0, 16, 96, 384, a(n),
0, -1, -2, 0, 16, 80, 288, 896, A178987,
-1, -1, 2, 16, 64, 208, 608, 2688, -A127276,
0, 3, 14, 48, 144, 400, 1056, 2688, A176027,
3, 11, 34, 96, 256, 656, 1632, 3968, A084266(n+1)
8, 23, 62, 160, 400, 976, 2336, 5504,
15, 39, 98, 240, 576, 1360, 3168, 7296.
Division of the k-th column by abs(A174882(k)) gives
3, 3, 1, 0, 0, 1, 3, 3, 5, 15, 21, 14, A064038(n-3),
0, -1, -1, 0, 1, 5, 9, 7, 10, 27, 35, 22, A160050(n-3),
-1, -1, 1, 2, 4, 13, 19, 13, 17, 43, 53, 32, A176126,
0, 3, 7, 6, 9, 25, 33, 21, 26, 63, 75, 44, A178242,
3, 11, 17, 12, 16, 41, 51, 31, 37, 87, 101, 58,
8 23, 31, 20, 25, 61, 73, 43, 50, 115, 131, 74,
15, 39, 49, 30, 36, 85, 99, 57, 65, 147, 165, 92.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (n-4)*(n-3)*2^(n-2)); # G. C. Greubel, Feb 21 2019
  • Magma
    [(n-4)*(n-3)*2^(n-2): n in [0..40] ]; // Vincenzo Librandi, Feb 01 2011
    
  • Mathematica
    Table[(n-4)*(n-3)*2^(n-2), {n,0,40}] (* G. C. Greubel, Feb 21 2019 *)
  • PARI
    vector(40, n, n--; (n-4)*(n-3)*2^(n-2)) \\ G. C. Greubel, Feb 21 2019
    
  • Sage
    [(n-4)*(n-3)*2^(n-2) for n in (0..40)] # G. C. Greubel, Feb 21 2019
    

Formula

a(n) = 16*A001788(n-4).
a(n+1) - a(n) = A178987(n).
G.f.: (3 - 15*x + 20*x^2) / (1-2*x)^3. - R. J. Mathar, Jan 30 2011
E.g.f.: (x^2 - 3*x + 3)*exp(2*x). - G. C. Greubel, Feb 21 2019

A192933 Triangle read by rows: T(n,k) = Sum_{i <= n, j <= k, (i,j) <> (n,k)} T(i,j), starting with T(1,1) = 1, for n >= 1 and 1 <= k <= n.

Original entry on oeis.org

1, 1, 2, 2, 6, 12, 4, 16, 44, 88, 8, 40, 136, 360, 720, 16, 96, 384, 1216, 3152, 6304, 32, 224, 1024, 3712, 11296, 28896, 57792, 64, 512, 2624, 10624, 36416, 108032, 273856, 547712, 128, 1152, 6528, 29056, 109696, 362624, 1056896, 2661504, 5323008, 256, 2560, 15872, 76800, 314880, 1135616, 3659776, 10528768, 26380544, 52761088
Offset: 1

Views

Author

Andrea Raffetti, Jul 13 2011

Keywords

Comments

The outer diagonal is A059435.
The second outer diagonal is A090442.
The third outer diagonal is essentially 2*A068766.
The first column is A011782.
The second column is essentially A057711 (not considering its first two terms).
The second column is essentially A129952 (not considering its first two terms).
The second column is essentially 2*A001792.
The differences between the terms of the second column is essentially 2*A045623.
The third column is essentially 4*A084266.
The cumulative sums of the third column are essentially 4*A176027.
T(n,k) = 0 for n < k. If this overriding constraint is not applied, you get A059576. - Franklin T. Adams-Watters, Jul 24 2011
For n >= 2 and 1 <= k <= n, T(n,k) is the number of bimonotone subdivisions of a 2-row grid with n points on the first row and k points on the second row (with the lower left point of the grid being the origin). A bimonotone subdivision of a convex polygon (the convex hull of the grid) is one where the internal dividing lines have nonnegative (including infinite) slopes. See Robeva and Sun (2020). - Petros Hadjicostas and Michel Marcus, Jul 15 2020

Examples

			Triangle (with rows n >= 1 and columns k = 1..n) begins:
   1;
   1,   2;
   2,   6,   12;
   4,  16,   44,    88;
   8,  40,  136,   360,   720;
  16,  96,  384,  1216,  3152,   6304;
  32, 224, 1024,  3712, 11296,  28896,  57792;
  64, 512, 2624, 10624, 36416, 108032, 273856, 547712;
  ...
Example: T(4,3) = 44 = 1 + 1 + 2 + 2 + 6 + 12 + 4 + 16.
From _Petros Hadjicostas_, Jul 15 2020: (Start)
Consider the following 2-row grid with n = 3 points at the top and k = 2 points at the bottom:
   A  B  C
   *--*--*
   |    /
   |   /
   *--*
   D  E
The sets of the dividing internal lines of the T(3,2) = 6 bimonotone subdivisions of the above 2-row grid are as follows: { }, {DC}, {DB}, {EB}, {DB, DC}, and {DB, EB}. We exclude subdivisions {EA} and {EA, EB} because they have at least one dividing line with a negative slope. (End)
		

Crossrefs

Programs

  • PARI
    lista(nn) = {my(T=matrix(nn, nn)); T[1,1] = 1; for (n=2, nn, for (k=1, n, T[n,k] = sum(i=1, n, sum(j=1, k, if ((i!=n) || (j!=k), T[i,j]))););); vector(nn, k, vector(k, i, T[k, i]));} \\ Michel Marcus, Mar 18 2020

Formula

T(n,1) = 2^(n-2) for n >= 2.
T(n,2) = n*2^(n-2) for n >= 2.
T(n,3) = 2^(n-2)*((n-k+1)^2 + 7*(n-k+1) + 4)/2 = 2^(n-3)*(n^2 + 3*n - 6) for k = 3 and n >= 3.
In general: For 1 <= k <= n with (n,k) <> 1,
T(n,k) = 2^(n-2)*Sum_{i=0..k-1} c(k,i)*(n-k+1)^(k-1-i)/(k-1)! and
T(n,k) = 2^(n-2)*Sum_{j=0..k-1} c(k,k-1-j)*(n-k+1)^j/(k-1)!
with c(k,i) being specific coefficients. Below are the first values for c(k,i):
1;
1, 1;
1, 7, 4;
1, 18, 77, 36;
1, 34, 359, 1238, 528,
1, 55, 1065, 8705, 26654, 10800;
... [Formula corrected by Petros Hadjicostas, Jul 15 2020]
The diagonal of this triangle for c(k,i) divided by (k-1)! (except for the first term) is equal to the Shroeder number sequence A006318(k-1).
From Petros Hadjicostas and Michel Marcus, Jul 15 2020: (Start)
T(n,1) = 2^(n-2) for n >= 2; T(n,k) = 2*(T(n,k-1) + T(n-1,k) - T(n-1,k-1)) for n > k >= 2; T(n,n) = 2*T(n,n-1) for n = k >= 2; and T(n,k) = 0 for 1 <= n < k. [Robeva and Sun (2020)] (They do not specify T(1,1) explicitly since they do not care about subdivisions of a degenerate polygon with only one side.)
T(n,k) = (2^(n-2)/(k-1)!) * P_k(n) = (2^(n-2)/(k-1)!) * Sum_{j=1..k} A336245(k,j)*n^(k-j) for n >= k >= 1 with (n,k) <> (1,1), where P_k(n) is some polynomial with integer coefficients of degree k-1. [Robeva and Sun (2020)]
A336245(k,j) = Sum_{s=0..j-1} c(k,s) * binomial(k-1-s, k-j) * (1-k)^(j-1-s) for 1 <= j <= k, in terms of the above coefficients c(k,i).
So c(k,s) = Sum_{j=1..s+1} A336245(k,j) * binomial(k-j, k-s-1) * (k-1)^(s+1-j) for k >= 1 and 0 <= s <= k-1, obtained by inverting the binomial transform.
Bivariate o.g.f.: x*y*(1 - x)*(1 - 2*y*g(2*x*y))/(1 - 2*x - 2*y + 2*x*y), where g(w) = 2/(1 + w + sqrt(1 - 6*w + w^2)) = g.f. of A001003.
Letting y = 1 in the above joint o.g.f., we get the o.g.f. of the row sums: x*(1-x)*(2*g(2*x) - 1). It can then be easily proved that
Sum_{k=1..n} T(n,k) = 2^n*A001003(n-1) - 2^(n-1)*A001003(n-2) for n >= 3. (End)

Extensions

Offset changed by Andrew Howroyd, Dec 31 2017
Name edited by Petros Hadjicostas, Jul 15 2020
Showing 1-4 of 4 results.