Original entry on oeis.org
1, 1, -2, -16, -64, -208, -608, -1664, -4352, -11008, -27136, -65536, -155648, -364544, -843776, -1933312, -4390912, -9895936, -22151168, -49283072, -109051904, -240123904, -526385152, -1149239296, -2499805184, -5419040768
Offset: 0
A383150
a(n) = Sum_{k=0..n} k^3 * (-1)^k * 3^(n-k) * binomial(n,k).
Original entry on oeis.org
0, -1, 2, 18, 64, 160, 288, 224, -1024, -6912, -28160, -95744, -294912, -851968, -2351104, -6266880, -16252928, -41222144, -102629376, -251527168, -608174080, -1453326336, -3437232128, -8055160832, -18723373056, -43201331200, -99019128832, -225586446336
Offset: 0
-
[2^(n-3) * (-12*n+9*n^2-n^3): n in [0..30]]; // Vincenzo Librandi, May 02 2025
-
Table[2^(n-3)*(-12*n+9*n^2-n^3),{n,0,30}] (* Vincenzo Librandi, May 02 2025 *)
-
a(n) = 2^(n-3)*(-12*n+9*n^2-n^3);
A383151
a(n) = Sum_{k=0..n} k^4 * (-1)^k * 3^(n-k) * binomial(n,k).
Original entry on oeis.org
0, -1, 10, 36, 40, -160, -1152, -4480, -13568, -34560, -74240, -123904, -92160, 425984, 2867200, 11796480, 40763392, 128122880, 378667008, 1070858240, 2928148480, 7795113984, 20300431360, 51900317696, 130610626560, 324219699200, 795206483968, 1929715384320
Offset: 0
-
[&+[k^4 * (-1)^k * 3^(n-k) * Binomial(n,k): k in [0..n]]: n in [0..29]]; // Vincenzo Librandi, Apr 23 2025
-
Table[Sum[(k^4*(-1)^k*3^(n-k))*Binomial[n,k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 23 2025 *)
-
a(n) = 2^(n-4)*(-66*n+75*n^2-18*n^3+n^4);
A383152
a(n) = Sum_{k=0..n} k^5 * (-1)^k * 3^(n-k) * binomial(n,k).
Original entry on oeis.org
0, -1, 26, 18, -272, -1400, -4032, -7168, -1024, 55296, 294400, 1086976, 3354624, 9132032, 22249472, 47923200, 85983232, 99155968, -102629376, -1237712896, -5688524800, -20775960576, -67868033024, -207022456832, -602167836672, -1690304512000, -4613767954432
Offset: 0
-
[&+[k^5 * (-1)^k * 3^(n-k) * Binomial(n, k): k in [0..n]]: n in [0..29]]; // Vincenzo Librandi, Apr 23 2025
-
Table[2^(n-5)*(-480*n+690*n^2-255*n^3+30*n^4-n^5),{n,0,50}] (* Vincenzo Librandi, Apr 24 2025 *)
-
a(n) = 2^(n-5)*(-480*n+690*n^2-255*n^3+30*n^4-n^5);
A383155
a(n) = Sum_{k=0..n} k^6 * (-1)^k * 3^(n-k) * binomial(n,k).
Original entry on oeis.org
0, -1, 58, -180, -1304, -2920, 1008, 34496, 163840, 525312, 1285120, 2241536, 1124352, -12113920, -72052736, -282378240, -924581888, -2699493376, -7201751040, -17666670592, -39507722240, -77918109696, -121883328512, -78622228480, 453588811776, 2904974950400, 11885785120768
Offset: 0
-
[&+[k^6 * (-1)^k * 3^(n-k) * Binomial(n,k): k in [0..n]]: n in [0..29]]; // Vincenzo Librandi, Apr 23 2025
-
Table[Sum[(k^6*(-1)^k*3^(n-k))*Binomial[n,k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 23 2025 *)
-
a(n) = 2^(n-6)*(-4368*n+7290*n^2-3555*n^3+645*n^4-45*n^5+n^6);
A181407
a(n) = (n-4)*(n-3)*2^(n-2).
Original entry on oeis.org
3, 3, 2, 0, 0, 16, 96, 384, 1280, 3840, 10752, 28672, 73728, 184320, 450560, 1081344, 2555904, 5963776, 13762560, 31457280, 71303168, 160432128, 358612992, 796917760, 1761607680, 3875536896, 8489271296, 18522046464, 40265318400, 87241523200, 188441690112
Offset: 0
-
List([0..40], n-> (n-4)*(n-3)*2^(n-2)); # G. C. Greubel, Feb 21 2019
-
[(n-4)*(n-3)*2^(n-2): n in [0..40] ]; // Vincenzo Librandi, Feb 01 2011
-
Table[(n-4)*(n-3)*2^(n-2), {n,0,40}] (* G. C. Greubel, Feb 21 2019 *)
-
vector(40, n, n--; (n-4)*(n-3)*2^(n-2)) \\ G. C. Greubel, Feb 21 2019
-
[(n-4)*(n-3)*2^(n-2) for n in (0..40)] # G. C. Greubel, Feb 21 2019
A383149
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (-1)^k * [m^k] (1/2^(m-n)) * Sum_{k=0..m} k^n * (-1)^m * 3^(m-k) * binomial(m,k).
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 12, 9, 1, 0, 66, 75, 18, 1, 0, 480, 690, 255, 30, 1, 0, 4368, 7290, 3555, 645, 45, 1, 0, 47712, 88536, 52290, 12705, 1365, 63, 1, 0, 608016, 1223628, 831684, 249585, 36120, 2562, 84, 1, 0, 8855040, 19019664, 14405580, 5073012, 915705, 87696, 4410, 108, 1
Offset: 0
f_0(m) = 1.
f_1(m) = -m.
f_2(m) = -3*m + m^2.
f_3(m) = -12*m + 9*m^2 - m^3.
f_4(m) = -66*m + 75*m^2 - 18*m^3 + m^4.
f_5(m) = -480*m + 690*m^2 - 255*m^3 + 30*m^4 - m^5.
Triangle begins:
1;
0, 1;
0, 3, 1;
0, 12, 9, 1;
0, 66, 75, 18, 1;
0, 480, 690, 255, 30, 1;
0, 4368, 7290, 3555, 645, 45, 1;
0, 47712, 88536, 52290, 12705, 1365, 63, 1;
...
-
T(n, k) = sum(j=k, n, 2^(n-j)*stirling(n, j, 2)*abs(stirling(j, k, 1)));
-
def a_row(n):
s = sum(2^(n-k)*stirling_number2(n, k)*rising_factorial(x, k) for k in (0..n))
return expand(s).list()
for n in (0..9): print(a_row(n))
Showing 1-7 of 7 results.
Comments