cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A176126 Numerator of -A127276(n)/A001788(n).

Original entry on oeis.org

-1, -1, 1, 2, 4, 13, 19, 13, 17, 43, 53, 32, 38, 89, 103, 59, 67, 151, 169, 94, 104, 229, 251, 137, 149, 323, 349, 188, 202, 433, 463, 247, 263, 559, 593, 314, 332, 701, 739, 389, 409, 859, 901, 472, 494, 1033, 1079, 563, 587, 1223, 1273, 662, 688, 1429, 1483, 769, 797, 1651, 1709, 884, 914, 1889, 1951, 1007, 1039, 2143, 2209, 1138, 1172, 2413, 2483, 1277, 1313, 2699, 2773, 1424, 1462, 3001, 3079, 1579
Offset: 0

Views

Author

Paul Curtz, Dec 07 2010

Keywords

Comments

The sequence of fractions starts -1/0, -1/1, 1/3, 2/3, 4/5, 13/15, 19/21, 13/14, 17/18, 43/45, 53/55, 32/33, 38/39, ...
The denominators are apparently A064038(n+1) = A061041(4+8*n) (i.e., specified as numerators in A061041).
The difference between denominator and numerator is A014695(n), n > 0.

Crossrefs

Programs

  • Maple
    A001788 := proc(n) n*(n+1)*2^(n-2) ; end proc:
    A127276 := proc(n) 2^n-A001788(n) ; end proc:
    A176126 := proc(n) if n = 0 then -1 else 2^n/A001788(n)-1 ; numer(-%) ; end if; end proc:
    seq(A176126(n),n=0..40) ;

Formula

Conjecture: a(n) = +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +a(n-9) with g.f. (x^4-x^3+3*x^2-x+1)*(x^4-x^3-2*x^2-x+1) / ( (x-1)^3*(x^2+1)^3 ). - R. J. Mathar, Dec 12 2010
a(n) = 3*a(n-4) -3*a(n-8) +a(n-12).

A178987 a(n) = n*(n-3)*2^(n-2).

Original entry on oeis.org

0, -1, -2, 0, 16, 80, 288, 896, 2560, 6912, 17920, 45056, 110592, 266240, 630784, 1474560, 3407872, 7798784, 17694720, 39845888, 89128960, 198180864, 438304768, 964689920, 2113929216, 4613734400, 10032775168, 21743271936, 46976204800, 101200166912
Offset: 0

Views

Author

Paul Curtz, Jan 03 2011

Keywords

Comments

Binomial transform of 0, -1 followed by A005563.
The sequence defines an array by adding higher order differences in successive rows:
0, -1, -2, 0, 16, 80, 288, 896, 2560, 6912, 17920, 45056, 110592, ...
-1, -1, 2, 16, 64, 208, 608, 1664, 4352, 11008, 27136, 65536, ... A127276
0, 3, 14, 48, 144, 400, 1056, 2688, 6656, 16128, 38400, 90112, 208896, ... A176027
3, 11, 34, 96, 256, 656, 1632, 3968, 9472, 22272, 51712, 118784, ... A084266
8, 23, 62, 160, 400, 976, 2336, 5504, 12800, 29440, 67072, ...
The left column of the array (binomial transform of the sequence) is A067998.
For n>2, the sequence gives the number of permutations in the symmetric group S_{n+1} with peaks exactly in positions 2 and n-1. See Theorem 10 in [Billey-Burdzy-Sagan] reference.

Crossrefs

Cf. A176027.

Programs

  • Magma
    [n*(n-3)*2^(n-2): n in [0..30]]; // Vincenzo Librandi, Aug 04 2011
  • Mathematica
    Table[n(n-3)2^(n-2),{n,0,30}] (* or *) LinearRecurrence[{6,-12,8},{0,-1,-2},30] (* Harvey P. Dale, Mar 24 2023 *)

Formula

a(n) = 16*A001793(n-3), n > 3.
a(n) = 8*A001788(n-2)-A052481(n-1). - R. J. Mathar, Jan 04 2011
a(n) = +6*a(n-1) -12*a(n-2) +8*a(n-3).
a(n+1)-a(n) = -A127276(n).
G.f.: -x*(-1+4*x)/(2*x-1)^3. - R. J. Mathar, Jan 04 2011
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} (k-1) * C(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
a(n) = Sum_{k=0..n} k^2 * (-1)^k * 3^(n-k) * binomial(n,k). - Seiichi Manyama, Apr 18 2025

A127275 Expansion of (sqrt(1-4x)-x)/(1-4x).

Original entry on oeis.org

1, 1, 2, 4, 6, -4, -100, -664, -3514, -16916, -77388, -343144, -1490148, -6376616, -26992264, -113317936, -472661434, -1961361076, -8104733884, -33374212936, -137031378124, -561253753336, -2293947547384, -9358755316816, -38121140494564, -155064370272904
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2006

Keywords

Comments

Hankel transform is A127276.
The second self-composition of the g.f. G(x) of A120009 is G(G(x)) = (sqrt(1-4x)-x)/(1-4x) - 1.

Examples

			A(x) = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 - 4*x^5 - 100*x^6 - 664*x^7 + ...
		

Crossrefs

Cf. A120009, A120012 (3rd self-composition); A000108 (Catalan).

Programs

  • Maple
    S:= series((sqrt(1-4*x)-x)/(1-4*x),x,31):
    seq(coeff(S,x,i),i=0..30); # Robert Israel, Jan 15 2023
  • PARI
    {a(n)=local(k=2,x=X+X^3*O(X^n));polcoeff( x*((1-k+k^2)-k^2*(k+1)*x-k*(1-(k+2)*x)*(1-sqrt(1-4*x))/2/x)/(1-k+k^2*x)^2,n,X)}

Formula

a(n) = C(2n,n) - 4^(n-1) + 0^n/4. - Paul Barry, Jan 10 2007
Conjecture: n*a(n) + 2*(-4*n+3)*a(n-1) + 8*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 26 2012
Conjecture verified using the differential equation (4*x-1)^2 * g'(x) + (8*x-2)*g(x) + 1 - 2*x = 0 satisfied by the g.f. - Robert Israel, Jan 15 2023

Extensions

Definition revised by Paul Barry, Jan 10 2007
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar and Max Alekseyev

A176027 Binomial transform of A005563.

Original entry on oeis.org

0, 3, 14, 48, 144, 400, 1056, 2688, 6656, 16128, 38400, 90112, 208896, 479232, 1089536, 2457600, 5505024, 12255232, 27131904, 59768832, 131072000, 286261248, 622854144, 1350565888, 2919235584, 6291456000, 13522436096
Offset: 0

Views

Author

Paul Curtz, Dec 06 2010

Keywords

Comments

The numbers appear on the diagonal of a table T(n,k), where the left column contains the elements of A005563, and further columns are recursively T(n,k) = T(n,k-1)+T(n-1,k-1):
....0....-1.....0.....0.....0.....0.....0.....0.....0.....0.
....3.....3.....2.....2.....2.....2.....2.....2.....2.....2.
....8....11....14....16....18....20....22....24....26....28.
...15....23....34....48....64....82...102...124...148...174.
...24....39....62....96...144...208...290...392...516...664.
...35....59....98...160...256...400...608...898..1290..1806.
...48....83...142...240...400...656..1056..1664..2562..3852.
...63...111...194...336...576...976..1632..2688..4352..6914.
...80...143...254...448...784..1360..2336..3968..6656.11008.
...99...179...322...576..1024..1808..3168..5504..9472.16128.
..120...219...398...720..1296..2320..4128..7296.12800.22272.
The second column is A142463, the third A060626, the fourth essentially A035008 and the fifth essentially A016802. Transposing the array gives A005563 and its higher order differences in the individual rows.

Crossrefs

Programs

Formula

G.f.: x*(-3+4*x)/(2*x-1)^3. - R. J. Mathar, Dec 11 2010
a(n) = 2^(n-2)*n*(5+n). - R. J. Mathar, Dec 11 2010
a(n) = A127276(n) - A127276(n+1).
a(n+1)-a(n) = A084266(n+1).
a(n+2) = 16*A058396(n) for n > 0.
a(n) = 2*a(n-1) + A001792(n).
a(n) = A001793(n) - 2^(n-1) for n > 0. - Brad Clardy, Mar 02 2012
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} (k+3) * C(n-1,i). - Wesley Ivan Hurt, Sep 20 2017
From Amiram Eldar, Aug 13 2022: (Start)
Sum_{n>=1} 1/a(n) = 1322/75 - 124*log(2)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = 132*log(3/2)/5 - 782/75. (End)

A181407 a(n) = (n-4)*(n-3)*2^(n-2).

Original entry on oeis.org

3, 3, 2, 0, 0, 16, 96, 384, 1280, 3840, 10752, 28672, 73728, 184320, 450560, 1081344, 2555904, 5963776, 13762560, 31457280, 71303168, 160432128, 358612992, 796917760, 1761607680, 3875536896, 8489271296, 18522046464, 40265318400, 87241523200, 188441690112
Offset: 0

Views

Author

Paul Curtz, Jan 28 2011

Keywords

Comments

Binomial transform of (3, 0, -1, followed by A005563).
The sequence and its successive differences are:
3, 3, 2, 0, 0, 16, 96, 384, a(n),
0, -1, -2, 0, 16, 80, 288, 896, A178987,
-1, -1, 2, 16, 64, 208, 608, 2688, -A127276,
0, 3, 14, 48, 144, 400, 1056, 2688, A176027,
3, 11, 34, 96, 256, 656, 1632, 3968, A084266(n+1)
8, 23, 62, 160, 400, 976, 2336, 5504,
15, 39, 98, 240, 576, 1360, 3168, 7296.
Division of the k-th column by abs(A174882(k)) gives
3, 3, 1, 0, 0, 1, 3, 3, 5, 15, 21, 14, A064038(n-3),
0, -1, -1, 0, 1, 5, 9, 7, 10, 27, 35, 22, A160050(n-3),
-1, -1, 1, 2, 4, 13, 19, 13, 17, 43, 53, 32, A176126,
0, 3, 7, 6, 9, 25, 33, 21, 26, 63, 75, 44, A178242,
3, 11, 17, 12, 16, 41, 51, 31, 37, 87, 101, 58,
8 23, 31, 20, 25, 61, 73, 43, 50, 115, 131, 74,
15, 39, 49, 30, 36, 85, 99, 57, 65, 147, 165, 92.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (n-4)*(n-3)*2^(n-2)); # G. C. Greubel, Feb 21 2019
  • Magma
    [(n-4)*(n-3)*2^(n-2): n in [0..40] ]; // Vincenzo Librandi, Feb 01 2011
    
  • Mathematica
    Table[(n-4)*(n-3)*2^(n-2), {n,0,40}] (* G. C. Greubel, Feb 21 2019 *)
  • PARI
    vector(40, n, n--; (n-4)*(n-3)*2^(n-2)) \\ G. C. Greubel, Feb 21 2019
    
  • Sage
    [(n-4)*(n-3)*2^(n-2) for n in (0..40)] # G. C. Greubel, Feb 21 2019
    

Formula

a(n) = 16*A001788(n-4).
a(n+1) - a(n) = A178987(n).
G.f.: (3 - 15*x + 20*x^2) / (1-2*x)^3. - R. J. Mathar, Jan 30 2011
E.g.f.: (x^2 - 3*x + 3)*exp(2*x). - G. C. Greubel, Feb 21 2019

A236999 Odd part of n*(n+3)/2-1 (A034856).

Original entry on oeis.org

1, 1, 1, 13, 19, 13, 17, 43, 53, 1, 19, 89, 103, 59, 67, 151, 169, 47, 13, 229, 251, 137, 149, 323, 349, 47, 101, 433, 463, 247, 263, 559, 593, 157, 83, 701, 739, 389, 409, 859, 901, 59, 247, 1033, 1079, 563, 587, 1223, 1273, 331, 43, 1429, 1483
Offset: 1

Views

Author

Vladimir Shevelev, Feb 02 2014

Keywords

Comments

Also odd part of A176126(n-1) and of |A127276(n-1)|, n>=3.
Proof. By A127276 and A001788, we have odd part(A176126(n))=odd part(|A127276(n)|) = odd part(n*(n+1)-4), {odd part(A176126(n-1)), n>=3}={odd part((n+1)*(n+2)-4), n>=1}.
Let n=2^b*k, where k=k(n) is odd.
Then {odd part(A176126(n-1)), n>=3}={odd part((2^b*k+1)*(2^b*k+2)-4)}={odd part(2^(2*b)*k^2+3*2^b*k-2)}. Hence, if b>0, then {odd part(A176126(n-1), n>=3)= {odd part(2^(2*b-1)*k^2+3*2^(b-1)*k-1)}.
On the other hand, in this case odd part(a(n))=odd part(2^(b-1)*k*(2^b*k+3)-1)=odd part(2^(2*b-1)*k^2+3*2^(b-1)*k-1). It is left to consider the case of odd n. Setting n=2*m-1, m>=1, we easily find that for both expressions the odd part equals odd part(2*m^2+m-2).
The smallest prime divisor of a(n) is more than or equal to 13.

Crossrefs

Programs

  • Mathematica
    Map[#/2^IntegerExponent[#,2]&[(# (#+3)/2-1)]&,Range[100]] (* Peter J. C. Moses, Feb 02 2014 *)

Formula

a(n) = A000265(A034856(n)). - Michel Marcus, Feb 25 2025
Showing 1-6 of 6 results.