cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176120 Triangle read by rows: Sum_{j=0..k} binomial(n, j)*binomial(k, j)*j!.

Original entry on oeis.org

1, 1, 2, 1, 3, 7, 1, 4, 13, 34, 1, 5, 21, 73, 209, 1, 6, 31, 136, 501, 1546, 1, 7, 43, 229, 1045, 4051, 13327, 1, 8, 57, 358, 1961, 9276, 37633, 130922, 1, 9, 73, 529, 3393, 19081, 93289, 394353, 1441729, 1, 10, 91, 748, 5509, 36046, 207775, 1047376, 4596553, 17572114
Offset: 0

Views

Author

Roger L. Bagula, Apr 09 2010

Keywords

Comments

The number of ways of placing any number k = 0, 1, ..., min(n,m) of non-attacking rooks on an n X m chessboard. - R. J. Mathar, Dec 19 2014
Let a be a partial permutation in S the symmetric inverse semigroup on [n] with rank(a) := |image(a)| = m. Then T(n,m) = |aS| where |aS| is the size of the principal right ideal generated by a. - Geoffrey Critzer, Dec 21 2021

Examples

			Triangle begins
  1;
  1,  2;
  1,  3,   7;
  1,  4,  13,   34;
  1,  5,  21,   73,  209;
  1,  6,  31,  136,  501,  1546;
  1,  7,  43,  229, 1045,  4051,  13327;
  1,  8,  57,  358, 1961,  9276,  37633,  130922;
  1,  9,  73,  529, 3393, 19081,  93289,  394353,  1441729;
  1, 10,  91,  748, 5509, 36046, 207775, 1047376,  4596553, 17572114;
  1, 11, 111, 1021, 8501, 63591, 424051, 2501801, 12975561, 58941091, 234662231;
		

References

  • O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009, page 46.

Crossrefs

Cf. A086885 (table without column 0), A129833 (row sums).

Programs

  • Magma
    A176120:=func< n,k| (&+[Factorial(j)*Binomial(n,j)*Binomial(k,j): j in [0..k]]) >;
    [A176120(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 11 2022
    
  • Maple
    A176120 := proc(i,j)
            add(binomial(i,k)*binomial(j,k)*k!,k=0..j) ;
    end proc: # R. J. Mathar, Jul 28 2016
  • Mathematica
    T[n_, m_]:= T[n,m]= Sum[Binomial[n, k]*Binomial[m, k]*k!, {k, 0, m}];
    Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten
  • SageMath
    def A176120(n,k): return sum(factorial(j)*binomial(n,j)*binomial(k,j) for j in (0..k))
    flatten([[A176120(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 11 2022

Formula

Sum_{k=0..n} T(n, k) = A129833(n).
T(n,m) = A088699(n, m). - Peter Bala, Aug 26 2013
T(n,m) = A086885(n, m). - R. J. Mathar, Dec 19 2014
From G. C. Greubel, Aug 11 2022: (Start)
T(n, k) = Hypergeometric2F1([-n, -k], [], 1).
T(2*n, n) = A082545(n).
T(2*n+1, n) = A343832(n).
T(n, n) = A002720(n).
T(n, n-1) = A000262(n), n >= 1.
T(n, 1) = A000027(n+1).
T(n, 2) = A002061(n+1).
T(n, 3) = A135859(n+1). (End)