cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176266 Binomial(prime(n),s)/prime(n) where s is the sum of the decimal digits of n.

Original entry on oeis.org

1, 1, 2, 5, 42, 132, 1144, 3978, 35530, 1, 15, 210, 2470, 22386, 228459, 2908360, 37584261, 284291205, 3701413144, 35, 852, 19019, 349812, 6529292, 132435472, 2000945100, 24366118700, 328386663605, 3520256293710, 2072, 81375, 2271776, 59988852, 1227434238, 33401522154, 584134601050, 11919696387170, 234924043375476, 3924875235562164, 208335
Offset: 1

Views

Author

Michel Lagneau, Dec 07 2010

Keywords

Comments

For n = 10^p, a(n) = 1.

Examples

			a(5) = 42 because prime(5) = 11, s = 5,  binomial(11,5)/11 = 462/11=42.
a(16)=2908360 because prime(16)=53, s=7, binomial(53,7)/53 =154143080/53 = 2908360.
		

Crossrefs

Cf. A075872.

Programs

  • Maple
    A176266 := proc(n) binomial(ithprime(n),A007953(n))/ithprime(n) ; end proc:
    seq(A176266(n),n=1..20) ;
  • Mathematica
    Table[Binomial[Prime[n],Total[IntegerDigits[n]]]/Prime[n],{n,40}] (* Harvey P. Dale, Oct 25 2020 *)
  • Sage
    A176266 = lambda n: binomial(nth_prime(n), sum(n.digits()))/nth_prime(n) # D. S. McNeil, Dec 08 2010

Formula

a(n) = A007318( A000040(n), A007953(n))/A000040(n).
a(n) = A060604(n)/A000040(n), n<10.