A176341 a(n) = the location of the first appearance of the decimal expansion of n in the decimal expansion of Pi.
32, 1, 6, 0, 2, 4, 7, 13, 11, 5, 49, 94, 148, 110, 1, 3, 40, 95, 424, 37, 53, 93, 135, 16, 292, 89, 6, 28, 33, 186, 64, 0, 15, 24, 86, 9, 285, 46, 17, 43, 70, 2, 92, 23, 59, 60, 19, 119, 87, 57, 31, 48, 172, 8, 191, 130, 210, 404, 10, 4, 127, 219, 20, 312, 22, 7, 117, 98, 605, 41
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Dave Andersen, Search within first 200,000,000 digits of pi
- Michael D. Huberty, Ko Hayashi & Chia Vang, First 100,000 digits of pi
- Simon Plouffe, First 50,000,000 digits of pi
Programs
-
Mathematica
p=ToString[FromDigits[RealDigits[N[Pi, 10^4]][[1]]]]; Do[Print[StringPosition[p, ToString[n]][[1]][[1]] - 1], {n, 0, 100}] (* Vincenzo Librandi, Apr 17 2017 *) With[{pid=RealDigits[Pi,10,800][[1]]},Flatten[Table[ SequencePosition[ pid,IntegerDigits[n],1],{n,0,70}],1]][[All,1]]-1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 27 2019 *)
-
PARI
A176341(n)=my(L=#Str(n));n=Mod(n,10^L);for(k=L-1,9e9,Pi\.1^k-n||return(k+1-L)) \\ Make sure to use sufficient realprecision, e.g. via \p999. - M. F. Hasler, Nov 16 2013
-
Python
pi = "314159265358979323846264338327950288419716939937510582097494459230..." [ pi.find(str(i)) for i in range(10000) ]
Formula
a(n) = A032445(n)-1. - M. F. Hasler, Nov 16 2013
Comments