cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176355 Periodic sequence: Repeat 6, 1.

Original entry on oeis.org

6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6
Offset: 0

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Interleaving of A010722 and A000012.
Also continued fraction expansion of 3+sqrt(15).
Also decimal expansion of 61/99.
Essentially first differences of A047335.
Binomial transform of 6 followed by A166577 without initial terms 1, 4.
Inverse binomial transform of A005009 preceded by 6.

Examples

			0.6161616161616161616161616161616161616161...
		

Crossrefs

Cf. A010722 (all 6's sequence), A000012 (all 1's sequence), A092294 (decimal expansion of 3+sqrt(15)), A010687 (repeat 1, 6), A047335 (congruent to 0 or 6 mod 7), A166577, A005009 (7*2^n).

Programs

  • Magma
    &cat[ [6, 1]: n in [0..52] ];
    
  • Magma
    [(7+5*(-1)^n)/2: n in [0..104]];
  • Mathematica
    PadRight[{},120,{6,1}] (* Harvey P. Dale, Apr 12 2018 *)

Formula

G.f.: (6 + x)/(1 - x^2).
a(n) = (7 + 5*(-1)^n)/2.
a(n) = a(n-2) for n>1, a(0)=6, a(1)=1.
a(n) = -a(n-1)+7 for n>0, a(0)=6.
a(n) = 6*((n+1) mod 2) + (n mod 2).
a(n) = A010687(n+1).
a(n) = 13^n mod 7. - Vincenzo Librandi, Jun 01 2016
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(2^e) = 6, and a(p^e) = 1 for p >= 3.
Dirichlet g.f.: zeta(s)*(1+5/2^s). (End)
E.g.f.: 6*cosh(x) + sinh(x). - Stefano Spezia, Feb 09 2025