cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A188645 Array of ((k^n)+(k^(-n)))/2 where k=(sqrt(x^2+1)+x)^2 for integers x>=1.

Original entry on oeis.org

1, 3, 1, 17, 9, 1, 99, 161, 19, 1, 577, 2889, 721, 33, 1, 3363, 51841, 27379, 2177, 51, 1, 19601, 930249, 1039681, 143649, 5201, 73, 1, 114243, 16692641, 39480499, 9478657, 530451, 10657, 99, 1, 665857, 299537289, 1499219281, 625447713, 54100801, 1555849, 19601, 129, 1
Offset: 0

Views

Author

Charles L. Hohn, Apr 06 2011

Keywords

Comments

Conjecture: Given function f(x, y)=(sqrt(x^2+y)+x)^2; and constant k=f(x, y); then for all integers x>=1 and y=[+-]1, k may be irrational, but ((k^n)+(k^(-n)))/2 always produces integer sequences; y=1 results shown here; y=-1 results are A188644.
Also square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{k}(x), evaluated at x=2*n^2+1. - Seiichi Manyama, Jan 01 2019

Examples

			Square array begins:
     | 0    1       2          3             4
-----+---------------------------------------------
   1 | 1,   3,     17,        99,          577, ...
   2 | 1,   9,    161,      2889,        51841, ...
   3 | 1,  19,    721,     27379,      1039681, ...
   4 | 1,  33,   2177,    143649,      9478657, ...
   5 | 1,  51,   5201,    530451,     54100801, ...
   6 | 1,  73,  10657,   1555849,    227143297, ...
   7 | 1,  99,  19601,   3880899,    768398401, ...
   8 | 1, 129,  33281,   8586369,   2215249921, ...
   9 | 1, 163,  53137,  17322499,   5647081537, ...
  10 | 1, 201,  80801,  32481801,  13057603201, ...
  11 | 1, 243, 118097,  57394899,  27893802817, ...
  12 | 1, 289, 167041,  96549409,  55805391361, ...
  13 | 1, 339, 229841, 155831859, 105653770561, ...
  14 | 1, 393, 308897, 242792649, 190834713217, ...
  15 | 1, 451, 406801, 366934051, 330974107201, ...
  ...
		

Crossrefs

Row 1 is A001541, row 2 is A023039, row 3 is A078986, row 4 is A099370, row 5 is A099397, row 6 is A174747, row 8 is A176368, (row 1)*2 is A003499, (row 2)*2 is A087215.
Column 1 is A058331, (column 1)*2 is A005899.
A188644 (f(x, y) as above with y=-1).
Diagonal gives A173128.
Cf. A188647.

Programs

  • Mathematica
    max = 9; y = 1; t = Table[k = ((x^2 + y)^(1/2) + x)^2; ((k^n) + (k^(-n)))/2 // FullSimplify, {n, 0, max - 1}, {x, 1, max}]; Table[ t[[n - k + 1, k]], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 17 2013 *)

Formula

A(n,k) = (A188647(n,k-1) + A188647(n,k))/2.
A(n,k) = Sum_{j=0..k} binomial(2*k,2*j)*(n^2+1)^(k-j)*n^(2*j). - Seiichi Manyama, Jan 01 2019

Extensions

Edited and extended by Seiichi Manyama, Jan 01 2019

A176369 y-values in the solution to x^2 - 65*y^2 = 1.

Original entry on oeis.org

0, 16, 4128, 1065008, 274767936, 70889062480, 18289103351904, 4718517775728752, 1217359297034666112, 314073980117168128144, 81029869510932342395040, 20905392259840427169792176
Offset: 1

Views

Author

Vincenzo Librandi, Apr 16 2010

Keywords

Comments

The corresponding values of x of this Pell equation are in A176368.

Crossrefs

Cf. A176368.

Programs

  • GAP
    a:=[1,16];; for n in [3..15] do a[n]:=258*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 08 2019
  • Magma
    I:=[0,16]; [n le 2 select I[n] else 258*Self(n-1)-Self(n-2): n in [1..20]];
    
  • Maple
    seq(coeff(series(16*x^2/(1-258*x+x^2), x, n+1), x, n), n = 1..15); # G. C. Greubel, Dec 08 2019
  • Mathematica
    LinearRecurrence[{258,-1},{0,16},20] (* Harvey P. Dale, Aug 20 2011 *)
  • PARI
    my(x='x+O('x^15)); concat([0], Vec(16*x^2/(1-258*x+x^2))) \\ G. C. Greubel, Dec 08 2019
    
  • Sage
    def A176369_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 16*x^2/(1-258*x+x^2) ).list()
    a=A176369_list(15); a[1:] # G. C. Greubel, Dec 08 2019
    

Formula

a(n) = 258*a(n-1) - a(n-2) with a(0)=0, a(1)=16.
G.f.: 16*x^2/(1-258*x+x^2).

Extensions

Partially corrected and edited by Michael B. Porter and N. J. A. Sloane, Jun 22 2010
Showing 1-2 of 2 results.