A176383 Triangle of the powers of the prime factorization of n! in row n.
2, 2, 3, 8, 3, 8, 3, 5, 16, 9, 5, 16, 9, 5, 7, 128, 9, 5, 7, 128, 81, 5, 7, 256, 81, 25, 7, 256, 81, 25, 7, 11, 1024, 243, 25, 7, 11, 1024, 243, 25, 7, 11, 13, 2048, 243, 25, 49, 11, 13, 2048, 729, 125, 49, 11, 13, 32768, 729, 125, 49, 11, 13, 32768, 729, 125, 49, 11, 13, 17, 65536
Offset: 2
Examples
The irregular tables starts with n=2: 2; # =2! = 2 2*3; # =3! = 6 8*3; # =4! = 24 8*3*5; # =5! = 120 16*9*5; # =6! 16*9*5*7; # =7! 128*9*5*7; # =8! 128*81*5*7; 256*81*25*7;
Links
- Alois P. Heinz, Rows n = 2..300, flattened
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=1, 1, b(n-1)+ add(i[2]*x^pi(i[1]), i=ifactors(n)[2])) end: T:= n->(p->seq(ithprime(i)^coeff(p, x, i), i=1..pi(n)))(b(n)): seq(T(n), n=2..20); # Alois P. Heinz, Jun 22 2014
-
Mathematica
T[n_] := List @@ Power @@@ FactorInteger[n!]; Array[T, 20, 2] // Flatten (* Jean-François Alcover, Mar 27 2017 *) Rest[Flatten[Table[#[[1]]^#[[2]]&/@FactorInteger[n!],{n,20}]]] (* Harvey P. Dale, Jan 04 2019 *)
-
PARI
a(n)=my(i=2);while(n-primepi(i)>1,n-=primepi(i);i++);p=prime(n-1);p^sum(j=1,log(i)\log(p),i\=p) \\ David A. Corneth, Jun 21 2014
Extensions
Arbitrarily defined first 2 terms removed by R. J. Mathar, Apr 23 2010
Comments