cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176383 Triangle of the powers of the prime factorization of n! in row n.

Original entry on oeis.org

2, 2, 3, 8, 3, 8, 3, 5, 16, 9, 5, 16, 9, 5, 7, 128, 9, 5, 7, 128, 81, 5, 7, 256, 81, 25, 7, 256, 81, 25, 7, 11, 1024, 243, 25, 7, 11, 1024, 243, 25, 7, 11, 13, 2048, 243, 25, 49, 11, 13, 2048, 729, 125, 49, 11, 13, 32768, 729, 125, 49, 11, 13, 32768, 729, 125, 49, 11, 13, 17, 65536
Offset: 2

Views

Author

Vladimir Shevelev, Apr 16 2010

Keywords

Comments

Row n contains pi(n) = A000720(n) terms. The exponents are in A115627.
The first column contains the maximum power of 2 dividing n!, the second column the maximum power of 3 dividing n! etc.

Examples

			The irregular tables starts with n=2:
2; # =2! = 2
2*3; # =3! = 6
8*3; # =4! = 24
8*3*5; # =5! = 120
16*9*5; # =6!
16*9*5*7; # =7!
128*9*5*7; # =8!
128*81*5*7;
256*81*25*7;
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=1, 1, b(n-1)+
          add(i[2]*x^pi(i[1]), i=ifactors(n)[2]))
        end:
    T:= n->(p->seq(ithprime(i)^coeff(p, x, i), i=1..pi(n)))(b(n)):
    seq(T(n), n=2..20);  # Alois P. Heinz, Jun 22 2014
  • Mathematica
    T[n_] := List @@ Power @@@ FactorInteger[n!];
    Array[T, 20, 2] // Flatten (* Jean-François Alcover, Mar 27 2017 *)
    Rest[Flatten[Table[#[[1]]^#[[2]]&/@FactorInteger[n!],{n,20}]]] (* Harvey P. Dale, Jan 04 2019 *)
  • PARI
    a(n)=my(i=2);while(n-primepi(i)>1,n-=primepi(i);i++);p=prime(n-1);p^sum(j=1,log(i)\log(p),i\=p) \\ David A. Corneth, Jun 21 2014

Extensions

Arbitrarily defined first 2 terms removed by R. J. Mathar, Apr 23 2010