cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176697 G.f. satisfies: A(x) = 1 + x^2 + x*A(x)^2.

Original entry on oeis.org

1, 1, 3, 7, 20, 63, 208, 711, 2496, 8944, 32578, 120263, 448938, 1691776, 6427130, 24589043, 94653498, 366344216, 1424750506, 5565002716, 21821377624, 85867522754, 338974659036, 1342074448663, 5327845401606, 21203102693634, 84574191671494, 338060063747476
Offset: 0

Views

Author

Roger L. Bagula, Apr 24 2010

Keywords

Comments

A recursive sequence of vectors: a(n) = vector(a(0),...,a(n-1)) * Reverse(vector(a(0),...,a(n-1))) with a(0) = a(1) = 1, a(2) = 3.
Number of Schroeder paths in which horizontal sequences are always exactly HH and never precede an up step. - David Scambler, May 23 2012

References

  • F. S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 231.

Programs

  • Maple
    a:= proc(n) a(n):= add(a(i-1)*a(n-i), i=1..n) end:
    a(0), a(1), a(2):= 1, 1, 3:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 24 2012
  • Mathematica
    a[0] := 1; a[1] := 1; a[2] := 3;a[n_] := a[n] = Table[a[i], {i, 0, n - 1}].Table[a[n - 1 - i], {i, 0, n - 1}];Table[a[n], {n, 0, 30}]
    f[x_,y_,d_]:=f[x,y,d] = If[x<0||yDavid Scambler, May 24 2012 *)
  • Maxima
    a(n):=sum(binomial(n-2*m+1,m)*binomial(2*(n-2*m),n-2*m)/(n+1-2*m),m,0,(n)/2); /* Vladimir Kruchinin_, Nov 21 2014 */
  • PARI
    {a(n)=polcoeff((1 - sqrt(1 - 4*x*(1+x^2) +x^2*O(x^n)))/(2*x),n)} /* Paul D. Hanna */
    

Formula

G.f.: A(x) = (1 - sqrt(1 - 4*x*(1+x^2)))/(2*x). - Paul D. Hanna, Nov 12 2011
a(n) = Sum_{i=1..n} a(i-1)*a(n-i) for n>2; a(0) = a(1) = 1, a(2) = 3. - Alois P. Heinz, May 24 2012
Recurrence: (n+1)*a(n) = 2*(2*n-1)*a(n-1) + 2*(2*n-7)*a(n-3). - Vaclav Kotesovec, Sep 11 2013
a(n) ~ sqrt(3-8*z)/(4*sqrt(Pi)*n^(3/2)*z^(n+1)), where z = (9+sqrt(273))^(1/3)/(2*3^(2/3)) - 2/(3*(9+sqrt(273)))^(1/3) = 0.236732903864563... is the root of the equation 4*z*(1+z^2)=1. - Vaclav Kotesovec, Sep 11 2013
a(n) = sum(m=0..n/2, binomial(n-2*m+1,m)*binomial(2*(n-2*m),n-2*m)/(n+1-2*m)). - Vladimir Kruchinin, Nov 21 2014

Extensions

Name changed by Paul D. Hanna, Nov 12 2011