A009112 Areas of Pythagorean triangles: numbers which can be the area of a right triangle with integer sides.
6, 24, 30, 54, 60, 84, 96, 120, 150, 180, 210, 216, 240, 270, 294, 330, 336, 384, 480, 486, 504, 540, 546, 600, 630, 720, 726, 750, 756, 840, 864, 924, 960, 990, 1014, 1080, 1176, 1224, 1320, 1344, 1350, 1386, 1470, 1500, 1536, 1560, 1620, 1710, 1716, 1734, 1890
Offset: 1
Examples
30 belongs to the sequence as the area of the triangle (5,12,13) is 30. 6 is in the sequence because it is the area of the 3-4-5 triangle.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Ron Knott, Pythagorean Triangles
- B. Miller, Nasty Numbers, The Mathematics Teacher 73 (1980), page 649.
- Supriya Mohanty and S. P. Mohanty, Pythagorean Numbers, Fibonacci Quarterly 28 (1990), 31-42.
Crossrefs
Programs
-
Maple
N:= 10^4: # to get all entries <= N A:= {}: for t from 1 to floor(sqrt(2*N)) do F:= select(f -> f[2]::odd,ifactors(2*t)[2]); d:= mul(f[1],f=F); for e from ceil(sqrt(t/d)) do s:= d*e^2; r:= sqrt(2*t*s); a:= (r+s)*(r+t)/2; if a > N then break fi; A:= A union {a}; od od: A; # if using Maple 11 or earlier, uncomment the next line # sort(convert(A,list)); # Robert Israel, Apr 06 2015
-
Mathematica
lst = {}; Do[ If[ IntegerQ[c = Sqrt[a^2 + b^2]], AppendTo[lst, a*b/2]; lst = Union@ lst], {a, 4, 180}, {b, a - 1, Floor[ Sqrt[a]], -1}]; Take[lst, 51] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2010 *) g@A_ := With[{div = Divisors@(2*A)}, AnyTrue[Sqrt@(Plus@@({#, 2*A/#}^2))& /@Take[div, Floor[(Length@div)/2]],IntegerQ]]; Select[Range@5000, g@# &] (* Hans Rudolf Widmer, Sep 25 2023 *)
-
PARI
is_A009112(n)={ my(N=1+#n=divisors(2*n)); for( i=1, N\2, issquare(n[i]^2+n[N-i]^2) & return(1)) } \\ M. F. Hasler, Dec 09 2010
-
Sage
is_A009112 = lambda n: any(is_square(a**2+(2*n/a)**2) for a in divisors(2*n)) # D. S. McNeil, Dec 09 2010
Comments