cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A009112 Areas of Pythagorean triangles: numbers which can be the area of a right triangle with integer sides.

Original entry on oeis.org

6, 24, 30, 54, 60, 84, 96, 120, 150, 180, 210, 216, 240, 270, 294, 330, 336, 384, 480, 486, 504, 540, 546, 600, 630, 720, 726, 750, 756, 840, 864, 924, 960, 990, 1014, 1080, 1176, 1224, 1320, 1344, 1350, 1386, 1470, 1500, 1536, 1560, 1620, 1710, 1716, 1734, 1890
Offset: 1

Views

Author

Keywords

Comments

Number of terms < 10^k for increasing values of k: 1, 7, 34, 150, 636, 2536, 9757, 35987, 125350, 407538, ..., .
All terms are divisible by 6.
Also positive integers m with four (or more) different divisors (p, q, r, s) such that m = p*q = r*s and s = p+q+r. - Jose Aranda, Jun 28 2023

Examples

			30 belongs to the sequence as the area of the triangle (5,12,13) is 30.
6 is in the sequence because it is the area of the 3-4-5 triangle.
		

Crossrefs

A073120 is a subsequence.
See A256418 for the numbers 4*a(n).

Programs

  • Maple
    N:= 10^4: # to get all entries <= N
    A:= {}:
    for t from 1 to floor(sqrt(2*N)) do
       F:= select(f -> f[2]::odd,ifactors(2*t)[2]);
       d:= mul(f[1],f=F);
       for e from ceil(sqrt(t/d)) do
         s:= d*e^2;
         r:= sqrt(2*t*s);
         a:= (r+s)*(r+t)/2;
         if a > N then break fi;
         A:= A union {a};
       od
    od:
    A;
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(A,list)); # Robert Israel, Apr 06 2015
  • Mathematica
    lst = {}; Do[ If[ IntegerQ[c = Sqrt[a^2 + b^2]], AppendTo[lst, a*b/2]; lst = Union@ lst], {a, 4, 180}, {b, a - 1, Floor[ Sqrt[a]], -1}]; Take[lst, 51] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2010 *)
    g@A_ := With[{div = Divisors@(2*A)}, AnyTrue[Sqrt@(Plus@@({#, 2*A/#}^2))& /@Take[div, Floor[(Length@div)/2]],IntegerQ]];
    Select[Range@5000, g@# &] (* Hans Rudolf Widmer, Sep 25 2023 *)
  • PARI
    is_A009112(n)={ my(N=1+#n=divisors(2*n)); for( i=1, N\2, issquare(n[i]^2+n[N-i]^2) & return(1)) } \\ M. F. Hasler, Dec 09 2010
    
  • Sage
    is_A009112 = lambda n: any(is_square(a**2+(2*n/a)**2) for a in divisors(2*n)) # D. S. McNeil, Dec 09 2010

A177063 Number of Pythagorean triangles with area n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

M. F. Hasler, Dec 09 2010

Keywords

Comments

The first term > 1 is a(210) = 2, cf. A009127, A055193 and A024407. Up to there the sequence coincides with the characteristic function of A009112. The triangles are not necessarily primitive.

Crossrefs

Programs

  • PARI
    a(n)=my(N=1+#n=divisors(2*n));sum(i=1,N\2,issquare(n[i]^2+n[N-i]^2));

Extensions

Secondary offset added by Antti Karttunen, Nov 24 2017

A291420 Numbers n such that there exist exactly four distinct Pythagorean triangles, at least one of them primitive, with area n.

Original entry on oeis.org

341880, 8168160, 14636160, 17957940, 52492440, 116396280, 1071572040, 1187525640, 1728483120, 5988702720, 6609482880, 22539095040, 29239970760, 136496680320, 258670630680, 398648544840, 494892478080, 592003418160, 1329673884000, 1343798407560, 2190884461920
Offset: 1

Views

Author

Sture Sjöstedt, Aug 23 2017

Keywords

Comments

Numbers n such that there exist positive integers x, y with x > y and n = x*y*(x-y)*(x+y).
Many of them consist of a Pythagorean triangle plus a triple which is a solution to Carroll's problem: Find three Pythagorean triangles with the same area.

Examples

			p^2 - p*q + q^2 = r^2;
p = 208, q = 418, r = 362, q - p = 210;
n = p*r*q*(q-p) = 208*418*362*210 = 6609482880.
x = 640, y = 627 gives the same area:
n = x*y*(x-y)*(x+y) = 640*627*13*1267 = 6609482880.
		

Crossrefs

Extensions

a(12)-a(21) from Giovanni Resta, Aug 28 2017
Showing 1-3 of 3 results.