cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177049 Numerator of (3n+1)*(3n+2)/4.

Original entry on oeis.org

1, 5, 14, 55, 91, 68, 95, 253, 325, 203, 248, 595, 703, 410, 473, 1081, 1225, 689, 770, 1711, 1891, 1040, 1139, 2485, 2701, 1463, 1580, 3403, 3655, 1958, 2093, 4465, 4753, 2525, 2678, 5671, 5995, 3164, 3335, 7021, 7381, 3875, 4064, 8515, 8911
Offset: 0

Views

Author

Paul Curtz, Dec 09 2010

Keywords

Comments

A trisection of A064038.

Crossrefs

Programs

  • Mathematica
    Table[Numerator[(3 n + 1) (3 n + 2)/4], {n, 0, 50}] (* Wesley Ivan Hurt, Jun 14 2014 *)
    LinearRecurrence[{3,-6,10,-12,12,-10,6,-3,1},{1,5,14,55,91,68,95,253,325},50] (* Harvey P. Dale, Jan 18 2020 *)

Formula

Conjecture: a(n)= +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +a(n-9) with g.f. -(x^2+4*x+1)*(x^6-2*x^5+12*x^4-13*x^3+12*x^2-2*x+1) / ( (x-1)^3*(x^2+1)^3 ). - R. J. Mathar, Dec 12 2010
The conjecture is correct. - Charles R Greathouse IV, Feb 08 2012
a(n) ~ -27/8*n^2 - 27/8*n. - Ralf Stephan, Jun 16 2014
Sum_{n>=0} 1/a(n) = (4/(3*sqrt(3)) - 1/3)*Pi. - Amiram Eldar, Aug 13 2022