cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177065 a(n) = (8*n+3)*(8*n+5).

Original entry on oeis.org

15, 143, 399, 783, 1295, 1935, 2703, 3599, 4623, 5775, 7055, 8463, 9999, 11663, 13455, 15375, 17423, 19599, 21903, 24335, 26895, 29583, 32399, 35343, 38415, 41615, 44943, 48399, 51983, 55695, 59535, 63503, 67599, 71823, 76175, 80655, 85263, 89999, 94863, 99855
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2010

Keywords

Comments

Cf. comment of Reinhard Zumkeller in A177059: in general, (h*n+h-k)*(h*n+k) = h^2*A002061(n+1) + (h-k)*k - h^2; therefore a(n) = 64*A002061(n+1) - 49. - Bruno Berselli, Aug 24 2010

Crossrefs

Programs

Formula

a(n) = 128*n + a(n-1) with n > 0, a(0)=15.
a(n) = A125169(A016754(n) - 1). - Reinhard Zumkeller, Jul 05 2010
a(0)=15, a(1)=143, a(2)=399, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Mar 13 2013
G.f.: (15+98*x+15*x^2)/(1-x)^3. - Vincenzo Librandi, Apr 08 2013
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A017101(n)*A004770(n).
Sum_{n>=0} 1/a(n) = (sqrt(2)-1)*Pi/16.
Sum_{n>=0} (-1)^n/a(n) = (cos(Pi/8) * log(tan(3*Pi/16)) + sin(Pi/8) * log(cot(Pi/16)))/4.
Product_{n>=0} (1 - 1/a(n)) = sec(Pi/8)*cos(Pi/(4*sqrt(2))).
Product_{n>=0} (1 + 1/a(n)) = sec(Pi/8). (End)
E.g.f.: exp(x)*(15 + 64*x*(2 + x)). - Elmo R. Oliveira, Oct 25 2024

Extensions

Edited by N. J. A. Sloane, Jun 22 2010