A177145 Expansion of e.g.f. arcsin(x).
1, 0, 1, 0, 9, 0, 225, 0, 11025, 0, 893025, 0, 108056025, 0, 18261468225, 0, 4108830350625, 0, 1187451971330625, 0, 428670161650355625, 0, 189043541287806830625, 0, 100004033341249813400625, 0, 62502520838281133375390625, 0, 45564337691106946230659765625, 0
Offset: 1
Examples
1 is in the sequence because, for k=1, f'(x) = 1/sqrt(1-x^2), and f'(0) = 1. G.f. = x + x^3 + 9*x^5 + 225*x^7 + 11025*x^9 + 893025*x^11 + ...
References
- L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251.
Links
- Muhammad Adam Dombrowski and Gregory Dresden, Areas Between Cosines, arXiv:2404.17694 [math.CO], 2024. See p. 11.
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
- Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017, p. 12.
Programs
-
Maple
n0:= 30: T:=array(1..n0+1): f:=x->arcsin(x):for n from 1 to n0 do:T[n]:=(D(f)(0)):f:=D(f):od: print(T):
-
Mathematica
a[ n_] := If[ n < 1, 0, If[ EvenQ[n], 0, (n - 2)!!^2]]; (* Michael Somos, Oct 07 2013 *) a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ ArcSin[x], {x, 0, n}]]; (* Michael Somos, Oct 07 2013 *)
-
PARI
Vec( serlaplace( sqrt( 1/(1-x^2) + O(x^55) ) ) )
-
PARI
{a(n) = if( n<2, n==1, (n-2)^2 * a(n-2))}; /* Michael Somos, Oct 07 2013 */
-
PARI
a(n) = if( n<0, 0, n! * polcoeff( asin(x + x * O(x^n)), n)); /* Michael Somos, Oct 07 2013 */
Formula
E.g.f.: arcsin(x).
G.f.: Q(0)*x^2/(1+x) + x/(1+x), where Q(k) = 1 + (2*k + 1)^2 * x * (1 + x * Q(k+1)); - Sergei N. Gladkovskii, May 10 2013 [Edited by Michael Somos, Oct 07 2013]
E.g.f of a(n+1), n >= 0, is 1/sqrt(1 - x^2). - N. Sato, Aug 29 2013
If n is odd, a(n) ~ 2*n^(n-1) / exp(n). - Vaclav Kotesovec, Oct 05 2013
E.g.f.: arcsin(x) = x + x^3/(T(0)-x^2), where T(k) = 4*k^2*(1+x^2) + 2*k*(5+2*x^2) +6 + x^2 - 2*x^2*(k+1)*(2*k+3)^3/T(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
a(n) = (n-1)! - A087137(n-1). - Anton Zakharov, Oct 18 2016
From Peter Bala, Aug 09 2024: (Start)
a(2*n+1) = (2*n - 1)!!^2 = A001147(n)^2.
a(n) = (n - 2)^2 * a(n-2) with a(1) = 1 and a(2) = 0. (End)
Comments