A005359 a(n) = n! if n is even, otherwise 0 (from Taylor series for cos x).
1, 0, 2, 0, 24, 0, 720, 0, 40320, 0, 3628800, 0, 479001600, 0, 87178291200, 0, 20922789888000, 0, 6402373705728000, 0, 2432902008176640000, 0, 1124000727777607680000, 0, 620448401733239439360000, 0
Offset: 0
Keywords
References
- Douglas Hofstadter, "Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought".
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Michael Somos, Number of permutations with all cycles of even length, answer to Mathematics Stack Exchange question 3152701, Mar 18 2019.
- Index entries for sequences related to factorial numbers
Crossrefs
From Johannes W. Meijer, Nov 12 2009: (Start)
Equals the first right hand column of A167565.
Equals the first left hand column of A167568.
(End)
Cf. A177145.
Bisection (even part) gives A010050.
Programs
-
Maple
BB:={E=Prod(Z,Z),S=Union(Epsilon,Prod(S,E))}: ZL:=[S,BB, labeled]: > seq(count(ZL,size=n),n=0..25); # Zerinvary Lajos, Apr 22 2007 a:=n->n!+(-1)^n*n!: seq(a(n)/2, n=0..25); # Zerinvary Lajos, Mar 25 2008
-
Mathematica
Riffle[Range[0,30,2]!,0] (* Harvey P. Dale, Nov 16 2011 *) a[ n_] := If[n >= 0 && EvenQ[n], n!, 0]; (* Michael Somos, Mar 19 2019 *)
-
PARI
{a(n) = if(n<0, 0, if(n%2, 0, n!))}; /* Michael Somos, Mar 04 2004 */
Formula
E.g.f. 1/(1-x^2) = d/dx log(sqrt((1+x)/(1-x))). a(2n)=(2n)!, a(2n+1)=0. - Michael Somos, Mar 04 2004
a(n) = Product_{k=0..n/2-1} binomial(n-2k,2)*2^(n/2) for even n. - Geoffrey Critzer, Jun 05 2016
From Ilya Gutkovskiy, Jun 05 2016: (Start)
D-finite with recurrence a(n) = n*(n - 1)*a(n-2), a(0)=1, a(1)=0.
a(n) = n!*((-1)^n + 1)/2. (End)
Comments