cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A177216 Numbers k that are the products of two distinct primes such that 2*k-1, 4*k-3, 8*k-7, 16*k-15, 32*k-31, 64*k-63 and 128*k-127 are also products of two distinct primes.

Original entry on oeis.org

11293, 12139, 25399, 31261, 36199, 44869, 49471, 62521, 72397, 83086, 89737, 91705, 98941, 124846, 125041, 134023, 138994, 144793, 164041, 166171, 170431, 173311, 182527, 199543, 224962, 244294, 258169, 259891, 263086, 275281, 277987
Offset: 1

Views

Author

Keywords

Examples

			11293 is a term because 11293 = 23*491, 2*11293 - 1 = 22585 = 5*4517, 4*11293 - 1 = 45169 = 17*2657, 8*11293 - 1 = 90337 = 13*6949, 16*11293 - 1 = 180673 = 79*2287, 32*11293 - 1 = 361345 = 5*72269, 64*11293 - 1 = 722689 = 11*65699, and 128*11293 - 1 = 1445377 = 193*7489.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n-1]&&f[4*n-3]&&f[8*n-7]&&f[16*n-15]&&f[32*n-31]&&f[64*n-63]&&f[128*n-127],AppendTo[lst,n]],{n,11293,4*9!}];lst
    tdpQ[n_]:=Module[{f=Table[n*2^i-(2^i-1),{i,0,7}]},And@@(Transpose[ FactorInteger[ #]][[2]]=={1,1}&/@f)]; Select[Range[300000],tdpQ] (* Harvey P. Dale, Apr 02 2015 *)

Extensions

Example moved from Comments field to Example field by Harvey P. Dale, Apr 02 2015

A177221 Numbers k that are the products of two distinct primes such that 2*k + 1 is also the product of two distinct primes.

Original entry on oeis.org

10, 34, 38, 46, 55, 57, 77, 91, 93, 106, 118, 123, 129, 133, 143, 145, 159, 161, 177, 185, 201, 203, 205, 206, 213, 218, 226, 235, 259, 267, 291, 295, 298, 305, 314, 327, 334, 335, 339, 358, 365, 377, 381, 394, 395, 403, 407, 415, 417, 446, 447, 458, 466, 469
Offset: 1

Views

Author

Keywords

Examples

			10 is in the sequence because 10 = 2*5 and 2*10+1 = 21 = 3*7.
		

Crossrefs

Programs

  • Maple
    isA006881:= proc(n) local F;
      F:= ifactors(n)[2];
      nops(F)=2 and F[1, 2]+F[2, 2]=2
    end proc:
    filter:= n -> andmap(isA006881, [n, 2*n+1]); select(filter, [$1..1000]); # Robert Israel, Nov 09 2017
  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n+1],AppendTo[lst,n]],{n,0,3*6!}];lst
    Select[Range[500],PrimeNu[#]==PrimeOmega[#]==PrimeNu[2#+1] == PrimeOmega[ 2#+1] == 2&] (* Harvey P. Dale, Feb 22 2018 *)

A177217 The products k of two distinct primes such that 2*k-1, 4*k-3, 8*k-7, 16*k-15, 32*k-31, 64*k-63, 128*k-127 and 256*k-255 are also products of two distinct primes.

Original entry on oeis.org

31261, 36199, 44869, 49471, 62521, 72397, 83086, 138994, 173311, 182527, 224962, 259891, 277987, 346621, 370126, 415423, 443746, 464245, 480331, 519781, 544006, 563326, 599245, 693241, 784681, 880561, 928489, 980743, 991237, 1032937
Offset: 1

Views

Author

Keywords

Examples

			31261 is a term because 31261 = 43*727, 2*31261 - 1 = 62521 = 103*607, ..., 256*31261 - 1 = 8002561 = 7*1143223, ...
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n-1]&&f[4*n-3]&&f[8*n-7]&&f[16*n-15]&&f[32*n-31]&&f[64*n-63]&&f[128*n-127]&&f[256*n-255],AppendTo[lst,n]],{n,31261,5*9!}];lst

A177220 Smallest numbers with properties: products of two distinct primes of the form a(k)=2^n*m-(2^n-1), n:0->k.

Original entry on oeis.org

6, 26, 33, 247, 247, 634, 694, 11293, 31261, 31261, 173311, 173311, 2212801
Offset: 1

Views

Author

Keywords

Comments

6=2*3, 26=2*13;2*26-1=51=3*17, 33=3*11;2*33-1=65=5*13;2*65-1=4*33-3=129=3*43, 247=13*19;2*247-1=493=17*29;4*247-3=985=5*197;8*247-1=1969=11*179, 247=13*19;2*247-1=493=17*29;4*247-3=985=5*197;8*247-1=1969=11*179;16*247-15=3937=31*127, 634=2*317;2*634=1267=7*181;4*634-3=2533=17*149;8*634-7=5065=5*1013;16*634=10129=7*1447;32*634=20257=47*431, ..

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}; g[n_,m_]:=Module[{a=1,x,y,z},Do[x=2^k;y=x-1;z=x*n-y;If[ !f[z],a=0;Break[]],{k,0,m}];a]; q=0;e=5;lst={};Do[e++;If[g[e,q]==1,Print[e];AppendTo[lst,e];q++;e-- ],{n,0,4*10!}];lst

A177222 Numbers k that are the products of two distinct primes, such that 2*k + 1 and 4*k + 3 are also products of two distinct primes.

Original entry on oeis.org

38, 46, 106, 129, 133, 145, 201, 203, 235, 291, 298, 334, 335, 381, 407, 417, 458, 489, 497, 538, 579, 583, 597, 623, 626, 649, 685, 689, 694, 707, 758, 767, 781, 815, 898, 899, 921, 926, 959, 995, 1073, 1079, 1082, 1094, 1099, 1139, 1142, 1157, 1214, 1226
Offset: 1

Views

Author

Keywords

Examples

			38 is a term because 38 = 2*19, 2*38 + 1 = 77 = 7*11, and 4*38 + 1 = 155 = 5*31.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Last/@FactorInteger[n] == {1,1};  lst = {}; Do[If[f[n] && f[2*n+1] && f[4*n+3], AppendTo[lst, n]], {n, 1000}]; lst

A177223 Numbers k that are the products of two distinct primes such that 2*k+1, 4*k+3 and 8*k+7 are also products of two distinct primes.

Original entry on oeis.org

145, 203, 291, 298, 407, 497, 649, 707, 758, 815, 899, 926, 959, 995, 1079, 1094, 1139, 1142, 1157, 1313, 1403, 1415, 1461, 1497, 1538, 1639, 1658, 1691, 1857, 1934, 1945, 1991, 2123, 2159, 2217, 2234, 2315, 2603, 2629, 2807, 2991, 3215, 3254, 3279, 3305
Offset: 1

Views

Author

Keywords

Comments

A number k is the product of two distinct primes iff k = p*q where p and q are distinct primes. - N. J. A. Sloane, Jan 11 2025

Examples

			145 is a term because 145 = 5*29, 2*145 + 1 = 291 = 3*97, 4*145 + 1 = 583 = 11*53, and 8*145 + 1 = 1167 = 3*389.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1}; lst={};Do[If[f[n]&&f[2*n+1]&&f[4*n+3]&&f[8*n+7],AppendTo[lst,n]],{n,0,2*7!}];lst
    tdpQ[n_]:=With[{c={n, 2n+1, 4n+3,8n+7}},PrimeNu[c]==PrimeOmega[c]=={2,2,2,2}]; Select[Range[3500],tdpQ] (* Harvey P. Dale, Jan 11 2025 *)
Showing 1-6 of 6 results.