A177702 Period 3: repeat [1, 1, 2].
1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Programs
-
Magma
&cat[ [1, 1, 2]: k in [1..35] ];
-
Maple
seq(op([1, 1, 2]), n=1..50); # Wesley Ivan Hurt, Jul 01 2016
-
Mathematica
PadRight[{},120,{1,1,2}] (* or *) LinearRecurrence[{0,0,1},{1,1,2},120] (* Harvey P. Dale, Dec 19 2014 *)
-
PARI
a(n)=max(n%3,1) \\ Charles R Greathouse IV, Jul 17 2016
Formula
a(n) = a(n-3) for n > 2, with a(0) = 1, a(1) = 1, a(2) = 2.
G.f.: (1+x+2*x^2)/(1-x^3).
a(n) = 4/3 - cos(2*Pi*n/3)/3 - sin(2*Pi*n/3)/sqrt(3). - R. J. Mathar, Oct 08 2011
a(n) = 1 + A022003(n). - Wesley Ivan Hurt, Jul 01 2016
Comments