cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A299792 Numbers k such that A177894(k) = 0.

Original entry on oeis.org

0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333, 444, 555, 666, 777, 888, 999, 1001, 1010, 1012, 1023, 1034, 1045, 1056, 1067, 1078, 1089, 1100, 1111, 1122, 1133, 1144, 1155, 1166, 1177, 1188, 1199, 1210, 1212, 1221, 1232, 1243, 1254, 1265, 1276, 1287, 1298, 1313
Offset: 1

Views

Author

Jianing Song, Jan 21 2019

Keywords

Comments

A one-digit number a is in this sequence if and only if a = 0.
A two-digit number ab is in this sequence if and only if a = b.
A three-digit number abc is in this sequence if and only if a = b = c.
A four-digit number abcd is in this sequence if and only if a + c = b + d or (a = c and b = d)
A239019 is trivially a subsequence (because the corresponding circular matrices each contains at least two identical rows or columns). {a(n)} \ A239019 is given as A317291.

Examples

			1452 is a term because the value of the following determinant is 0:
  | 1 4 5 2 |
  | 4 5 2 1 |
  | 5 2 1 4 |
  | 2 1 4 5 |
		

Crossrefs

Programs

  • Mathematica
    A299792Q[k_] := k == 0 || Det[NestList[RotateLeft, IntegerDigits[k], IntegerLength[k]-1]] == 0; Select[Range[0, 2000], A299792Q] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    for(n=0, 1500, if(!A177894(n), print1(n, ", "))) \\ See A177894 for its program

A317291 Numbers k not in A239019 such that A177894(k) = 0.

Original entry on oeis.org

0, 1001, 1012, 1023, 1034, 1045, 1056, 1067, 1078, 1089, 1100, 1122, 1133, 1144, 1155, 1166, 1177, 1188, 1199, 1210, 1221, 1232, 1243, 1254, 1265, 1276, 1287, 1298, 1320, 1331, 1342, 1353, 1364, 1375, 1386, 1397, 1430, 1441, 1452, 1463, 1474, 1485, 1496
Offset: 1

Views

Author

Jianing Song, Jan 21 2019

Keywords

Comments

Of course A177894(A239019(n)) = 0 because the corresponding circular matrices each contains at least two identical rows or columns. This sequence gives the other numbers.
A four-digit number abcd is in this sequence if and only if a + c = b + d and (a != c or b != d).

Examples

			2178 is a term because the value of the following determinant is 0, although the determinant itself contains no identical rows or columns:
| 2 1 7 8 |
| 1 7 8 2 |
| 7 8 2 1 |
| 8 2 1 7 |
		

Crossrefs

Programs

A306593 Least number k such that the determinant of the circulant matrix formed by its decimal digits is equal to n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 334, 65, 42, 76, 455, 41, 40, 98, 123, 667, 64, 52, 778, 788, 51, 50, 899, 63, 86, 7787, 2025885, 8788, 62, 74, 46996, 61, 60, 66898, 67997, 85, 73, 78998, 88899, 88999, 335, 72, 4579975, 878888, 71, 70, 10243, 5354, 355, 989999, 114
Offset: 0

Views

Author

Paolo P. Lava, Feb 27 2019

Keywords

Comments

Here only the least numbers are listed: e.g., a(75) = 1031, even if 10002110 also produces 75.
The sequence is infinite because any number of the form (91*10^n - 10) / 90 for n > 0 (A267623 or A283508) has the determinant of the circulant matrix equal to n but, in general, it is not the least possible term. - Giovanni Resta, Mar 06 2019

Examples

			                        | 3 3 4 |
a(10) = 334 because det | 4 3 3 | = 10
                        | 3 4 3 |
.
and 334 is the least number to have this property.
.
                          | 4 6 9 9 6 |
                          | 6 4 6 9 9 |
a(34) = 46996 because det | 9 6 4 6 9 | = 34
                          | 9 9 6 4 6 |
                          | 6 9 9 6 4 |
.
and 46996 is the least number to have this property.
		

Crossrefs

Programs

  • Maple
    with(linalg): P:=proc(q) local a,b,c,d,j,k,i,n,t;
    print(0); for i from 1 to q do for n from 1 to q do
    d:=ilog10(n)+1; a:=convert(n, base, 10); c:=[];
    for k from 1 to nops(a) do c:=[op(c), a[-k]]; od; t:=[op([]), c];
    for k from 2 to d do b:=[op([]), c[nops(c)]];
    for j from 1 to nops(c)-1 do
    b:=[op(b), c[j]]; od;  c:=b; t:=[op(t), c]; od;
    if i=det(t) then print(n); break; fi; od; od; end: P(10^7);
  • PARI
    md(n) = my(d = if (n, digits(n), [0])); matdet(matrix(#d, #d, i, j, d[1+lift(Mod(j-i, #d))]));
    a(n) = my(k=0); while(md(k) != n, k++); k; \\ Michel Marcus, Mar 20 2019

Formula

A177894(a(n)) = n when a(n) >= 0. - Rémy Sigrist, Feb 27 2019

A257587 If n = abcd... in decimal, a(n) = a^2 - b^2 + c^2 - d^2 + ...

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 1, 0, -3, -8, -15, -24, -35, -48, -63, -80, 4, 3, 0, -5, -12, -21, -32, -45, -60, -77, 9, 8, 5, 0, -7, -16, -27, -40, -55, -72, 16, 15, 12, 7, 0, -9, -20, -33, -48, -65, 25, 24, 21, 16, 9, 0, -11, -24, -39, -56, 36, 35, 32
Offset: 0

Views

Author

N. J. A. Sloane, May 10 2015

Keywords

Crossrefs

First 100 terms coincide with those of A177894, but then they diverge.
Cf. A257588, A257796, A352535 (indices of zeros).

Programs

  • Mathematica
    A257587[n_] := Total[-(-1)^Range[Max[IntegerLength[n], 1]]*IntegerDigits[n]^2];
    Array[A257587, 100, 0] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    a(n) = my(d=digits(n)); sum(k=1, #d, (-1)^(k+1)*d[k]^2); \\ Michel Marcus, Jul 12 2022
  • Python
    def a(n): return sum(int(d)**2*(-1)**i for i, d in enumerate(str(n)))
    print([a(n) for n in range(63)]) # Michael S. Branicky, Jul 11 2022
    

Formula

a(A352535(n)) = 0. - Bernard Schott, Jul 12 2022

A306595 Determinant of the circulant matrix whose first column corresponds to the binary digits of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 2, 0, 1, 0, 0, 3, 0, -3, 3, 0, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 0, 1, 0, 4, 0, 0, -9, 9, 0, 4, 9, 0, 8, 9, 0, 8, 5, 0, 0, 9, 0, -9, -8, 0, -5, 0, 0, 8, 5, 0, -5, 5, 0, 1, 2, 2, 3, 2, 24, 24, 4, 2, 3, 3, 32, 3, 4, 32, 5, 2, 24, 3
Offset: 0

Views

Author

Rémy Sigrist, Feb 27 2019

Keywords

Comments

This sequence is the binary variant of A177894.
From Robert Israel, Mar 05 2019: (Start)
a(n) is divisible by A000120(n).
If A070939(n) is even then n is divisible by A000120(n)*A065359(n). (End)

Examples

			For n = 13:
- the binary representation of 13 is "1101",
- the corresponding circulant matrix is:
    [1 1 0 1]
    [1 1 1 0]
    [0 1 1 1]
    [1 0 1 1]
- its determinant is -3,
- hence a(13) = -3.
		

Crossrefs

Programs

  • Maple
    a:= n-> `if`(n=1, 1, (l-> LinearAlgebra[Determinant](Matrix(nops(l),
           shape=Circulant[l[-i]$i=1..nops(l)])))(convert(n, base, 2))):
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 05 2019
  • PARI
    a(n) = my (d=if (n, binary(n), [0])); my (m=matrix(#d, #d, i,j, d[1+(i-j)%#d])); return (matdet(m))

Formula

a(A121016(n)) = 0 for any n > 0.
a(2^k) = 1 for any k >= 0.
a(A219325(n)) = A219325(n) for any n > 0.

A307651 a(n) is the determinant of the Vandermonde matrix of the digits of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, -7, -6, -5, -4, -3, -2, -1, 0
Offset: 0

Views

Author

Rémy Sigrist, Apr 20 2019

Keywords

Examples

			             | 2^0 2^1 2^2 |
a(234) = det | 3^0 3^1 3^2 | = 2.
             | 4^0 4^1 4^2 |
		

Crossrefs

See A307710 for the factorial base variant.

Programs

  • PARI
    a(n) = my (d=digits(n)); matdet(matrix(#d,#d,r,c,d[r]^(c-1)))

Formula

a(n) != 0 iff n belongs to A010784.
a(n) = 0 for any n > 9876543210.

A306598 Determinant of the circulant matrix whose first column corresponds to the divisors of n.

Original entry on oeis.org

1, -3, -8, 49, -24, -960, -48, -3375, 676, -8640, -120, -2247392, -168, -34560, -46080, 923521, -288, -28789488, -360, -54867456, -184320, -216000, -528, -89384770560, 15376, -423360, -512000, -438939648, -840, -558786571200, -960, -992436543, -1152000
Offset: 1

Views

Author

Rémy Sigrist, Feb 27 2019

Keywords

Comments

From Robert Israel, Mar 06 2019: (Start)
a(n) is divisible by A000203(n).
If n is not a square, a(n) is divisible by A000203(n)*A071324(n).
(End)

Examples

			For n = 12:
- the divisors of 12 are: 1, 2, 3, 4, 6, 12,
- the corresponding circulant matrix is:
    [ 1 12  6  4  3  2]
    [ 2  1 12  6  4  3]
    [ 3  2  1 12  6  4]
    [ 4  3  2  1 12  6]
    [ 6  4  3  2  1 12]
    [12  6  4  3  2  1]
- its determinant is -2247392,
- hence, a(12) = -2247392.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,d; uses numtheory, LinearAlgebra;
      F:= sort(convert(divisors(n),list));
      d:= nops(F);
      Determinant(Matrix(d,d,shape=Circulant[F]))
    end proc:
    map(f, [$1..100]); # Robert Israel, Mar 06 2019
  • Mathematica
    a[n_] := Module[{dd = Divisors[n], m, r}, m = Length[dd]; r = E^(2 Pi I/m); Product[Sum[dd[[j+1]] r^(j k), {j, 0, m-1}], {k, 0, m-1}] // FullSimplify];
    Array[a, 100] (* Jean-François Alcover, Oct 17 2020 *)
  • PARI
    a(n) = my (d=divisors(n)); my (m=matrix(#d, #d, i,j, d[1+(i-j)%#d])); return (matdet(m))

Formula

Apparently, a(n) > 0 iff n is a square.
a(p) = p^2 - 1 for any prime number p.
a(p^2) = p^6 - 2*p^3 + 1 for any prime number p.
a(2^k) = A086459(k+1) for any k >= 0.
If p < q are primes, a(p*q) = -(p^4-1)*(q^2-1)^2. - Robert Israel, Mar 06 2019

A348428 Positive integers m that are equal to the determinant of the left circulant matrix formed by the decimal digits of m.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1547, 26027, 26933, 45018, 69781, 80487, 154791, 23203827, 257059332, 278945612, 456790123, 469135802, 493827160, 494376160, 506172839, 530864197, 543209876, 897163795, 1662971175, 2293668391, 3880266075, 6473710191
Offset: 1

Views

Author

Chai Wah Wu, Oct 18 2021

Keywords

Comments

A left circulant matrix is also called a anti-circulant or (-1)-circulant matrix.
Subsequence of A219327.
Fixed points of A177894. - John Keith, Oct 24 2021

Examples

			           ⎡1  5  4  7⎤
1547 = det ⎢5  4  7  1⎥
           ⎢4  7  1  5⎥
           ⎣7  1  5  4⎦.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Equal[Det[NestList[RotateLeft, #2, #3 - 1]], #1] & @@ {#1, #2, Length[#2]} & @@ {#, IntegerDigits[#]} &] (* Michael De Vlieger, Oct 18 2021 *)
  • PARI
    isok(m) = {my(d=digits(m), x); matdet(matrix(#d, #d, i, j, if (i==1, d[j], x = lift(Mod(j+i-1, #d)); if (!x, x += #d); d[x]))) == m;} \\ Michel Marcus, Oct 19 2021
  • Python
    from sympy import Matrix
    A348428_list = []
    for n in range(1,10**6):
        s = [int(d) for d in str(n)]
        m = len(s)
        if n == Matrix(m, m, lambda i, j: s[(i+j) % m]).det():
            A348428_list.append(n)
    
Showing 1-8 of 8 results.